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Abstract 

Methods of analysing neutron and X-ray specular reflec- 
tion from interfacial systems are reviewed. Normally, 
the profile of the scattering-length density is determined 
in such experiments but here particular emphasis is 
given to the determination of the interfacial composition 
profile using partial structure factors and simultaneous 
fitting of sets of reflectivity profiles from a given struc- 
ture, obtained either by isotopic substitution or by the 
use of neutrons and X-rays together. Aspects of the 
analysis of reflectivity data in terms of the resolution 
of the experiment, the phase problem and the possible 
ways of describing the structure of an interface are 
considered with reference to an unusually large set of 
independent data from isotopic species of a monolayer 
of hexadecyltrimethylammonium bromide adsorbed at 
the air/water interface. Data from another surfactant, 
the monododecyl ether of triethylene glycol, is used to 
assess the optimum choice of isotopic composition for 
combining a single set of neutron data with an X-ray re- 
flectivity profile from an adsorbed layer at the air/water 
interface. 
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1. Introduction 

Specular reflection of either X-rays or neutrons is now 
an established technique for investigating the structure 
of thin films and interfaces. The experiment is relatively 
straightforward in execution but the analysis and inter- 
pretation are more difficult and have therefore been given 
rather more attention. There are three main problems in 
the analysis, the most obvious being the phase problem, 
present in all scattering experiments. For neutrons, there 
is also the problem of the small range of momentum 
transfer covered by the experiment, which puts a limit 
on the resolution. Together, these two factors may lead 
to ambiguity in the interpretation. The further problem 
is that what is derived from a successful analysis is the 
scattering-length-density profile normal to the interface 
and there may be ambiguities in the interpretation of 
this profile to obtain the distribution of the various 
components through the interface. 

We review these three problems in this paper and 
attempt to show that the partial-structure-factor method 
of analysing the reflectivity goes some way to solving 
the third of these problems and, in doing so, can, at 
least partially, solve the first two problems. We review 
the basic theory of the specular reflectivity experiment 
and the variety of the methods that have been used 
to solve one or other of the problems above. We then 
outline the partial-structure-factor method and apply it 
to a set of experimental results on a surfactant adsorbed 
at the air/liquid interface, which have already been 
published, in two ways. In the first, we determine the 
partial structure factors from the data and then fit them 
with a set of structural parameters. This is the method 
that we have developed and applied on a number of 
occasions (Crowley, Lee, Simister & Thomas, 1991; 
Lu, Hromadova, Simister, Thomas & Penfold, 1994; 
Lu, Hromadova & Thomas, 1993; Lu, Li, Smallwood, 
Thomas & Penfold, 1995; Lu, Li, Su, Thomas & Penfold, 
1993; Lu et al., 1994; Lu, Li, Thomas, Staples, Tucker 
& Penfold. 1993; Lu, Simister, Lee, Thomas, Rennie 
& Penfold, 1992; Lu, Simister, Thomas & Penfold, 
1993a; Simister, Lee, Thomas & Penfold, 1992a,b). In 
the second fitting procedure, we use analytic expressions 
for the partial structure factors but fit the structural 
parameters of the layer to the whole set of reflectivity 
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data by least squares. This method has recently been 
described by Lee & Milnes (1995) but is used here to fit 
simultaneously a wider range of independent reflectivity 
profiles from a single structure. The overdetermination of 
the structure is used to demonstrate some of the choices 
of isotopic labelling for the determination of layer struc- 
ture in reflection experiments. We also attempt to give 
an overview of the possible options for interpreting 
specular reflectivity data and to explore the resolution 
limit of the neutron experiment. The main emphasis is 
on results from neutron reflection but some consideration 
is given to X-ray experiments particularly when there are 
advantages in combining the two techniques. 

2. Theory of specular reflection 

The unusual feature of specular reflectivity, when com- 
pared with other forms of scattering, particularly small- 
angle scattering, is that it may be calculated exactly, 
however complicated the interface, provided that the 
interface is uniform in its plane. The method of cal- 
culation is either to use an analytic formula for the 
reflectivity if the structure of the interface is simple or to 
compute it using the optical matrix method. Comparison 
of reflectivity profiles calculated from different models 
with observed reflectivities cannot be guaranteed to give 
a unique solution and it may then be a better procedure 
to use approximate calculations of the reflectivity for 
which there is a direct relation between reflectivity 
and structure. This is part of the reason for using 
the kinematic approximation for the reftectivity, which 
relates the reflectivity to the interfacial scattering-length- 
density profile via the squared modulus of a Fourier 
transform. In order to illustrate the different approaches 
and to analyse some of the claims that have been 
made about uniqueness, we will start by considering 
the simplest possible model of an interface, a single 
uniform layer on a substrate, in some detail. The main 
purpose of the paper is to demonstrate the power of the 
partial-structure-factor method, which operates within 
the framework of the kinematic approximation. It is 
helpful to be able to set this method and several other 
approaches that use the kinematic approximation in the 
context of the more exact optical matrix calculation, so 
we start by outlining the latter. 

Fig. 1 gives a breakdown of the specular reflection of 
light from a uniform monolayer. The reflected wave is 
a sum of the primary, secondary etc. waves, labelled 
(a), (b) etc. In terms of the Fresnel reflection and 
transmission coefficients rij and tij (Born & Wolf, 1970), 
the amplitude of the reflected beam is 

R = rol + tolr12tlo exp(2ifll) 

+ tol&zrlorlztlo exp(4ifll) + . . . ,  (1) 

where/31 is the phase shift on traversing the layer once 
and equals ql"q sin 0, where ql is the wave vector of the 

radiation normal to the interface in layer 1. Equation (1) 
is a geometric series that reduces to 

r01 + r12 exp(2i/31) 
R = (2) 

1 + f01rl2 exp(2i/31)' 

where we have made use of simple relations between r 
and t (Born & Wolf, 1970). The reflectivity is just the 
squared amplitude of (2): 

r021 + r22 + 2rolr12 cos(2fll) 
R = IRI 2 = 1 + r~lr?2 + 2ro, r12cos(2fla)" 

(3) 

At angles greater than the critical angle, the Fresnel 
reflection coefficient for the electromagnetic s wave is 
(Born & Wolf, 1970) 

rij = (qi - qj ) / (q i  + qj) ,  (4) 

where qi is the wave vector normal to the interface in 
layer i as before. For the smooth surface, the reflectivity 
is just 

e = IRI = = rg,. (5 )  

In optics, it is convenient to work in terms of the 
refractive index and angle of incidence and the reflection 
coefficients are therefore expressed in terms of those 
quantities. For neutron and X-ray reflectivity, it is more 
convenient to work with the scattering-length density 
and momentum transfer. The relation between the refrac- 
tive index and the scattering-length density is obtained 
by comparison of the solution of Schrrdinger 's equation 
for neutrons and the derivation of the optical reflectivity 
(Lekner, 1987, 1991) and is 

n 2 = 1 - (AZ/Tr)p, (6) 

where n is the refractive index, A is the wavelength and 
p is the scattering-length density given by 

p(z) = E bjn (z), (7) 
J 

where bj is the scattering length and nj is the number 
density of atomic species j. The neutron scattering length 
is an empirically determined number and the success 

~ O o  (a) / 
oo ........ % . . .  .... 

P2 ~ "~lk 

Fig. I. The specular reflection of radiation from a mono|ayer on a 
substrate. 
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of many neutron experiments depends on it varying 
erratically through the Periodic Table and most particu- 
larly often varying sharply from isotope to isotope. We 
shall make extensive use of the difference between the 

• different scattering of the isotopes of hydrogen for which 
bH = -3 .74  × 10 -5/~ and bD -- 6.67 x 10 -5/~. For 
X-rays, bj is replaced byfje2/mc 2, where~ is the atomic 
form factor, c is the speed of light, e and m are the charge 
and mass of the electron, and therefore X-ray scattering 
lengths increase steadily down the Periodic Table. 

Schr6dinger's equation for neutrons in a medium is 
(Lekner, 1987, 1991) 

d2¢/dz 2 + q2~b = O, (8) 

where q, the wave vector of the neutrons in the normal 
direction, is given by 

q2 = (2m/hZ)(E_ V) -kZx, (9) 

where h is Planck's constant, kx is the wave vector 
parallel to the surface and V is the potential energy given 
by 

V =  (h2/27rm)p, 

where p is the scattering-length density defined by (7). 
Continuity of ~b and d~/dz gives (4) for the reflected 
amplitude at a sharp interface demonstrating the equiv- 
alence of the optical equations for the s-polarized wave 
and Schr6dinger's equation. Equation (9) gives 

q2 _ q.2 j = 47r(pj- Pi). (10) 

The momentum transfer e; is defined in terms of the 
grazing angle of incidence by 

t~ -- (47rsin O)/A = 2qo (11) 

and the momentum transfer at which total reflection 
occurs between layers i and i + 1 is then given by 

xozi = 4q2i = 167r(pi+,- Pi) (12) 

using (10) with qj = O. 
Using (4), (10) and (12), the reflectivity of the smooth 

surface is 

R = r22 = m4/[m + (m2 _/z2)1/214. (13) 

Many measurements are, however, done at values of e; 
much larger than e;c when, using (12), (13) becomes 

R _~ 167r2Ap/n 4, (14) 

which is the same as that derived directly from the 
kinematic approximation (see below). For the uniform 
monolayer, we use the optical equation (3), which with 
(4) and (10) and the further approximation that ~c can 

be neglected in comparison with n becomes 

R ~_ (p,-po)Z+(pz-p,)2+2(pl-po)(p2-Pl)COS(t~'rl). 
(15) 

The basis of the calculation of the reflectivity using 
the optical matrix method is that the interface is divided 
into as many uniform layers as are necessary to describe 
the refractive-index profile normal to the surface with 
adequate resolution. The application of MaxweU's equa- 
tions at each boundary leads to a characteristic 2 x 2 
matrix for each layer. These matrices are multiplied 
successively and the reflected amplitude is extracted 
from the resulting 2 x 2 matrix. For light, there are large 
differences between the reflectivities for light polarized 
parallel or perpendicular to the reflection plane but at 
the low grazing angles of incidence characteristic of 
X-ray reflectivity there is negligible difference between 
the reflectivities of the two components and it is only 
necessary to calculate the reflectivity for one component. 
The reflection of neutrons is identical to the reflection 
of electromagnetic radiation polarized perpendicular (s 
wave) to the reflection plane. 

The characteristic matrix for each component layer is 
given by 

[ COS 3j -(i/qj)sin t~j ] 
[Mj] = [-iqjsin /3j cos/3j ' (16) 

where qj and /3j are as defined in (1) and (4). The 
characteristic matrices for the various component layers 
are multiplied together and the reflected amplitude is 
given by 

R = (Mll + M12qn+l)qo - (M21 + Mzz)qn+l (17) 
(Mll + M12qn+l)qo + (M21 + m22)qn+l' 

where Mij are the elements of the final 2 x 2 matrix and 
q0 and qn +1 refer to the initial and bulk phases. The 
two equations above are not the most convenient way 
of computing the reflectivity and recurrence relations 
between the Fresnel coefficients (Heavens, 1965; Parratt, 
1954) are usually used to speed up the calculation. 

There are two main difficulties in using the optical 
matrix method to analyse real data. One is that it 
may require a large number of component layers to 
describe the whole interface and the other is that when 
the layer scheme is complex it becomes difficult to 
relate the component layer scattering-length densities of 
isotopically different, but chemically identical, systems. 
There are a number of devices that solve the former 
problem, for example by the introduction of rough- 
ness into the matrix (Cowley & Ryan, 1987; Nevot 
& Croce, 1980) or by using a matrix where there are 
linear gradations of the scattering-length density between 
successive layers (Lekner, 1987). There is at present no 
easy solution of the second problem within the optical 
matrix framework, although it is readily dealt with in 
the kinematic approximation. 
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In the kinematic approximation, the reflectivity is 
given by (Als-Nielsen, 1985; Crowley, 1984) 

R = (167r2/ 2)lp( )l 2 

= (16rr2/ ;4) Ip(1)(e;) 12 
= (167r2/ 2)P( ) 
= (167r2//c4)p(1) (18) 

where p(~;) and p(1)(n) are, respectively, the one- 
dimensional Fourier transforms of the scattering-length- 
density profile normal to the interface, p(z), and its 
gradient, dp(z)/dz, 

OO 
p(n) = f p(z) exp(-i~;z) clz (19) 

--OO 

and 
OO 

p(l)(N) = f [dp(z)/dz] exp(-ie;z) dz. (20) 
--OO 

The simple relation between the Fourier transforms of 
the scattering-length density and its differential results 
because we are considering profiles in only one dimen- 
sion. The Fourier transforms of Ip(~;)l 2 and Ip(1)(~)l 2 are 
one-dimensional Patterson functions, P(z) and p(1) (z), of 
the scattering-length-density profile, for example, 

oo 
P(z) = f p(u)p(u-z) du. (21) 

- - 0 0  

There are a number of useful results that can be 
derived using (18), which we will use extensively below. 
The profile normal to a perfectly smooth interface is just 
the Heaviside function, the Fourier transform of whose 
Patterson is Ap/e; 2, which gives (14), already derived 
as an approximation above. The reflectivity for a single 
uniform monolayer on a substrate is also easily derived 
and P(1)(n) is 

p(1)(~) _ (pl - po) 2 + (p2 - pl) 2 

+ 2(pl - Po)(P2 - pl)cos(~7-1) (22) 

giving (15) above. An important case in neutron reflec- 
tion experiments arises when Po = P2 = 0 when 

p(1)(~) = 4p2 sin2(e;.rl). (23) 

Other distributions, which may be appropriate descrip- 
tions of interfacial distributions, are the Gaussian profile 

P = P0 exp(-4z2/a2),  (24) 

where cr is the full width at 1/e of the maximum and 
which is a symmetrical distribution, and the tanh profile 

' t anh(z /¢) ]  (25) 

which is an unsymmetrical distribution suitable for de- 
scribing a solvent at the air/liquid interface and charac- 
terized by a width parameter (. The Fourier transform 
of (24) leads to 

p(1)(,;) = [(Tr~r2p02~;2)/4] exp(_e;2a2) (26) 

and (25) to 

P(1)(n) = p2((Trn/2)2cosech2((Tre;/2). (27) 

A further model, often used to describe the effects of 
capillary wave roughness on the solvent/air interface, is 
(Braslau, Deutsch, Pershan, Weiss, Als-Nielsen & Bohr, 
1985) 

e ( l ) ( / , g )  = / 9 ~ )  e x p ( - - o - 2 e ; 2 ) .  (28) 

It is not strictly appropriate to compare (28) and (27) 
because the latter describes diffuseness and the former 
roughness (see §6 Roughness). However, specular reflec- 
tion on its own cannot distinguish the two and it is then 
useful to be able to compare the significance of the two 
parameters cr and ~. Expansion of the two expressions 
and comparison of the two linear terms shows that, in 
the linear region, 

o .2 ~ (~7r)2/12. (29) 

The limitations of the kinematic approximation and 
methods of improving the approximation have been 
discussed by many authors and we do not attempt a 
comprehensive survey here. The motivation behind these 
attempts is always linked to the possibility of inverting 
the data to obtain a unique solution for the structure 
and the Fourier transform offers the most obvious route 
to achieve this result. The most complete discussion of 
the kinematic approximation is given by Sears (1989) 
and improvements to the approximation, which would 
allow it to be used much closer to the critical angle, have 
been given by, amongst others, Sanyal et al. (1993) and 
Crowley (1993). The success of these approximations 
depends on the accuracy required and on how close 
to the critical angle the data are being analysed. The 
simplest procedure, and one used by several authors, is to 
divide the observed reflectivity by the exact reflectivity 
of the perfectly smooth uniform liquid that would give 
the same total reflection angle as the system in question. 
For a single uniform monolayer on a substrate and using 
the labelling of Fig. 1, this is equivalent to dividing (3) 
by (13) but with e;c in the latter given by (12) with 
(P2 - P0). This prevents the large divergence between 
(13) and (14) that occurs as e; --+ ~;c. In Crowley's 
formalism (Crowley, 1993), the observed reflectivity is 
corrected according to the equation 

{[1 + (1 - ,~71~2)'12]12}2[(Rob~- RI)/(1 - RI)] 
= R - Rk, (30) 
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where Rf is the exact reflectivity for the smooth interface 
[(13)], Rk is the kinematic reflectivity for the smooth in- 
terface [(14)] and R is the corrected reflectivity. Equation 
(30) is effective at an accuracy that is sufficient for most 
experimental data (Lu, Simister, Lee, Thomas, Rennie 
& Penfold, 1992) except possibly larger-scale structures 
where the most important information is close to the 
critical angle. 

More attention has been given to improving the kine- 
matic approximation because of the possibility of inver- 
sion through the Fourier transform than to developing 
other approximations. However, not only are there some 
exact analytic formula for special cases but there are 
also other approximate formulae. Several of the exact 
formulae are discussed in detail by Lekner (1987) and 
a formula of particular interest, because it applies to 
the exponent of the volume fraction distribution of a 
polymer at an interface, has been derived by Dietrich 
& Schack (1987) and applied successfully by Guiselin, 
Lee, Farnoux & Lapp (1991) to poly(dimethyl siloxane) 
adsorbed at the toluene/vapour interface. Lekner also 
discusses a number of approximate formulae and an 
approximate formula has been obtained by Zhou, Chen 
& Felcher (1992). None of these formulae is relevant to 
the problem which is the main concern of this paper and 
we do not consider them further here. 

yet been shown to be substantially incorrect because of 
non-uniqueness of the fit. Although not usually explicitly 
used, much of the possible ambiguity is removed by 
constraints imposed by knowledge of some of the param- 
eters of the system, the most powerful of which is often 
nothing more than the stoichiometry of the components 
at the interface. An example where this is a vital and 
explicit part of the analysis is given by Styrkas, Thomas, 
Adib, Davis, Hodge & Liu (1994). A common fault of 
model fitting is that results are often overinterpreted in 
terms of the experimental resolution actually available 
and there are also several examples of what are probably 
incorrect structures because of experimental errors in the 
measured reflectivity profiles, for example because the 
interface may be unexpectedly contaminated. Although 
errors arising from the analysis itself do not seem to 
be a serious issue, there is nevertheless a strong feeling 
that the analysis should be made less model dependent. 
There are three alternatives; the route that uses a model 
structure to fit the data, for example, the optical matrix 
method, as above, but seeks to introduce some objective 
criteria for the parameter set, the route that attempts to 
invert the data and thereby obtain a unique scattering- 
length-density profile, and the route that seeks to fit 
exact analytic formulae to the reflectivity in special 
circumstances. The division between the first two is 
somewhat arbitrary but we retain it for the moment. 

3. Methods of data analysis 

The most common method for analysing data is to guess 
a model structure, calculate the exact reflectivity using 
the optical matrix method and compare the calculated 
and observed profiles. Because of the relatively low 
resolution of the experiment, a model structure typically 
consists of one to three uniform layers and roughness 
may or may not be included. Examples can be found in 
reviews by Penfold & Thomas (1990), Russell (1990), 
Schlossman & Pershan (1992) and Thomas (1995) and in 
most papers on reflectivity, either X-ray or neutron. The 
comparison may be done by eye, but least-squares fitting 
is also widely used. The quite different response of dif- 
ferent parts of the profile to different structural features, 
the contribution of a significant background, the common 
presence of small systematic errors, and the presence of 
several local minima, all combined with the variation 
of the reflectivity over several orders of magnitude, 
often undermine the apparent objectivity of a least- 
squares analysis. It is also not easy to use simultaneous 
least-squares fitting when more than one reflectivity is 
available for a given structure, e.g. because of isotopic 
substitution or because both X-ray and neutron profiles 
have been measured. Most researchers with experience 
of attempting such fits will say that the problem is not 
to find a unique structure that will fit the data but to 
find any structure that will fit the data. To the authors' 
knowledge there are no results in the literature that have 

3.1. Objective criteria 

The simplest way to model an arbitrary scattering- 
length-density profile normal to an interface is to divide 
it up into a series of uniform layers or blocks. Some of 
the information about the thickness and composition of 
these blocks will come from the fitting of the reflectivity 
profile and some from other prior knowledge of the 
system. Obviously, the more the interface is subdivided 
into blocks, the more fitting parameters and the better 
the fit. The difficult choice is to decide at what point 
the addition of another block, although it will always 
improve the quality of the fit to the observed reflectivity, 
represents genuine new information about the system. 
The most complete discussion of this problem has been 
given by Sivia, Hamilton & Smith (1991) who have used 
Bayesian analysis to solve it. The reflectivity is fitted 
with 1, 2, 3 etc. layers and the fit progressively improves 
as more layers are added. The Bayesian analysis shows 
that the optimal value for N (the number of layers) is 
determined by a balance between the requirement for 
fitting the data adequately and a probabilistic preference 
for simplicity. Sivia et al. produce a quantitative criterion 
that combines the solution becoming less probable as the 
number of component layers increases with the improved 
fit as N increases. As put by Sivia et al., 'this amounts 
to a quantitative statement of Ockam's Razor'. For a full 
discussion with good illustrative examples, the reader is 
referred to the original paper. What we note in passing 
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here is that the Sivia method essentially gives a means 
of fitting a reflectivity profile in terms of an optimum 
number of uniform layers. When the true profile is better 
described in terms of a smoothly varying scattering- 
length density, i.e. it must be described in terms of a 
relatively large number of uniform layers, it becomes 
difficult to use a method where the number of layers is 
optimized. 

Related to the maximum-entropy method of Sivia et 
al. is the simulated annealing technique used by Kunz, 
Reiter, Grtzelmann & Stamm (1993). As alluded to 
above, the main problem of least-squares fitting using 
the optical matrix calculation is the large number of local 
minima and simulated annealing is very effective at over- 
coming this problem and finding the global minimum. 
Kunz et al . 's  program can also incorporate information 
other than from reflectivity, which helps to resolve the 
ambiguities inherent in any calculation based on fitting 
a model structure. 

In the method of Sivia et al., no attempt is made to 
divide the system into uniform layers of its chemical 
components, the presumption being that it would be 
more appropriate to infer the detailed structure from 
the optimum scattering-length-density profile. In many 
cases, especially those concerning monolayer adsorption, 
authors prefer to make the structural divisions at the 
outset and then to manipulate the chemical structure to 
obtain the best fit, i.e. they build in as much a pr ior i  
knowledge as possible. We will consider an example 
of this below for hexadecyltrimethylammonium bromide 
(C16TAB) but first we discuss an application of the 
logical limit of the structural description. 

Denton, Gray & Sullivan (1994) have used a much 
finer subdivision of the interface together with more 
physically realistic distributions for the fragments than 
the usual block models and gain some advantage from 
this procedure. They calculate the reflectivity using 
the kinematic approximation, which is a limitation we 
discuss further below, and they have applied the method 
to the set of neutron reflectivities from isotopes of 
the surfactant, tetradecyltrimethylammonium bromide 
[C14H29N(CH3)3Br, abbreviated to C14TAB], which 
adsorbs to form a monomolecular layer at the air/water 
interface. They divide the surfactant molecule into CH2 
fragments and assume that, since the distribution of each 
CH2 fragment in the surfactant chain is determined by 
the roughness of the layer as a whole, each distribution 
should be described by the same function (this is 
discussed in some detail below). The scattering-length- 
density distribution for the whole chain may then be 
expressed in terms of this distribution function and the 
separation of the CH2 fragments along the chain. This 
is then fitted by least squares to a set of isotopic data 
using a Gaussian distribution for the fragments (24), a 
tanh distribution for the water (25) and various choices 
for the tilt angles of successive fragments from the 

surface normal. Although the data being fitted do not 
apparently warrant such a fine subdivision, because in 
the original experiment the chain was only labelled as 
a complete fragment, the procedure nevertheless gives a 
more realiStic and useful picture of the interface than the 
two-uniform-block model that has often been used to fit 
this kind of data. Thus, the main structural parameters 
derived are the tilt of the chain and the contribution of 
roughness to the thickness of the interface. The method 
is closely related to the partial-structure-factor method 
to be described below and we defer further discussion 
until then. 

3.2. Invers ion  

The most obvious difficulty in the inversion of re- 
flectivity data by Fourier transformation is the phase 
ambiguity inherent in (18). There are other issues [see, 
for example, the discussion in ch. 9 of Lekner (1987)] 
but by far the most important for reflectivity are the 
phase problem and the limited range of momentum trans- 
fer. Apart from special cases where the phase problem 
is soluble, e.g. for a causal monotonic scattering-length- 
density profile (Crowley, Lee, Simister, Thomas, Penfold 
& Rennie, 1990), there are essentially four ways of 
solving the phase problem: 

(i) to make use of the non-linearity in the exact 
calculation of the reflectivity; 

(ii) to use a technique that will determine the phase 
o f  p(l)(/~) separately from the amplitude; 

(iii) to generate phase relationships between parts 
of the reflectivity profile by making some plausible 
assumptions about the nature of p(z); 

(iv) to use two or more different reflectivity profiles 
from the same system, i.e. X-ray and neutron, neutron 
profiles from different states of magnetization, X-ray 

p(z) 

(a) 

Incoming beam 

(b) 
air 

P2 

P2 

(c) 
P~ 

(d} Pl 
- - [  P2 

0 z • 
Fig. 2. The simplest set of scattering-length-density profiles across an 

interface that lead to the same reflectivity profile within the kinematic 
approximation. 
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profiles at different wavelengths across an absorption 
edge or neutron profiles with different isotopes. 

We start by discussing a simple structure that gives 
rise to ambiguity in the kinematic approximation. Two 
examples have been given that demonstrate this clearly 
(Crowley, Lee, S/mister & Thomas, 1991; S/via, Hamil- 
ton & Smith, 1991) and we consider the first of these 
here because of its relevance to the method of inversion 
of Zhou & Chen (1993) (see also Zhou, Lee, Chen& 
Strey, 1992; Zhou & Chen, 1995). This model, shown 
in Fig. 2, corresponds to a commonly occurring case in 
actual experiments. In the kinematic approximation, the 
reflectivity of a uniform layer is given by (15) and it 
is clear that there are four possible sets of scattering- 
length density that will satisfy the equation; (pl - 190) 
and (p: - pi) may be interchanged and their signs may 
be changed. Although only small negative values of 

the scattering-length densities are possible in neutron 
scattering and not at all possible for X-rays, the two 
situations shown in Figs. 2(c) and (d) can occur in 
reflection at the solid/liquid interface because it is the 
value of the scattering-length density relative to that 
of the initial bulk phase that is important. Usually, 
the known physical properties of the bulk phases will 
be sufficient to discriminate between the (a)/(b) and 
(c)l(d) pairs in Fig. 2 but the general situation is that 
there is a phase problem at the level of the kinematic 
approximation. However, as pointed out by Zhou et 
al. and more recently by Pershan (1994a), in the exact 
optical matrix calculation the non-linearity of the relation 
between reflectivity and structure as the critical angle 
is approached is able in principle to distinguish the 
different solutions in Fig. 2. The reason for this can be 
understood from Fig. 1 and (3) and (4). The reflectivity 
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Fig. 3. Exact reflectivity profiles for the scattering-length-density profiles shown in Figs. 2(a) (dashed line) and (b) (solid line). The thickness 

of the monolayer is (a) and (b) 500/~, (c) 100/~ and (d) 20/!L 
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amplitudes at the first and second interfaces are quite 
different for the two situations shown in Figs. 2(a) and 
(b) and so is the phase shift /3, and these differences 
become significant near the critical angle. The effect 
is shown in Fig. 3(a) for a layer 500 A thick. On the 
logarithmic scale usually used for displaying reflectivity 
data, the differences can hardly be distinguished, but 
on a linear scale (Fig. 3b), there are clear differences, 
which ought to be measurable. Zhou & Chen (1993) have 
devised a fitting procedure that utilizes this non-linearity 
to solve the phase problem. 

Most of the analysis of Zhou & C h e n  is concerned 
with the protocol for using information from different 

ranges to solve the phase problem. The inversion 
used is not a Fourier transform but a direct solution of 
the inverse equations of the optical matrix treatment. 
The authors show that the inversion is rigorous in two 
simple examples, but no such proof is possible in more 
complicated cases and the authors can only show that 
in a number of cases their inversion procedure does 
lead back to the original scattering-length-density profile. 
Whilst the basic claim of Zhou & Chen is mathemat- 
ically correct, the method is only strictly applicable 
under particular conditions. We assume that the protocol 
of the calculation of Zhou & C h e n  is satisfactory and 
focus only on the experimental circumstances in which 
the non-linearity of the reflectivity leads to the phase, 
choosing the example shown in Fig. 2 and restricting 
ourselves for simplicity to the (a)/(b) pair. We take the 
two bulk phases to be air and D20 and we consider 
the neutron reflectivity. The difference between the re- 
flectivities of (a) and (b) is large when the thickness of 
the layer is 500/~ but, as can be seen in Figs. 3(c) and 
(d), becomes very small as the thickness decreases to 
20/~ and would then often be obscured by experimental 
errors. It is difficult to draw a general conclusion but 
this result would suggest that the method of Zhou & 
Chen is not valid for a large number of commonly 
investigated systems where the dimensions are, say, less 
than about 50 A. There are also occasions when it is not 
valid even when the dimensions are appropriate. The 
two structures of Figs. 2(a) and (b) are indistinguishable 
in the kinematic approximation but distinguishable in 
the optical matrix method when the thickness is large. 
It is possible, however, to modify one or other of the 
structures so that, although the two reflectivities never 
become mathematically identical, they can be made to 
be indistinguishable at the experimental level. Thus, Fig. 
4 shows a pair of such structures and their corresponding 
reflectivities. The structural changes drawn in Fig. 4(b) 
could correspond to very small differences, in the vicin- 
ity of the surface, between the density of the substrate 
and its bulk value. It is not difficult to generate other 
small structural differences which cause the two basic 
profiles of Figs. 2(a) and (b) to give the same reflectivity 
within experimental error (see also Pershan, 1994b). 

In experiments on the solid/liquid interface, there are 
often contributions of just the type that would cause this 
ambiguity, for example, it is seldom possible to obtain 
zero reflectivity at perfect contrast match (McDermott, 
McCamey, Thomas & Rennie, 1994). This suggests that 
the whole method of Zhou &Chen ,  whilst correct in 
principle and useful on some occasions, must be used 
with caution. 

The conclusion to be drawn from the above discussion 
is that there is usually a phase problem in practice. The 
most direct solution is then by means of an experiment 
that determines the phase and the amplitude. Fiedeldy, 
Lipperheide, Leeb & Sofianos (1992) have proposed that 
the phase could be determined from a measurement of 
the dwell time, but this seems far from being usable at 
present. 

The procedure used by Pedersen (1992) and later 
extended by Hamley & Pedersen (1994) and Pedersen 
& Hamley (1994a, b) addresses both the phase problem 
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Fig. 4. Two scattering-length-density profiles that give the same reflec- 

tivity within typical experimental error. The modified versions of  the 
scattering-length-density profiles in Figs. 2(a) and (b) are shown in 
(b) as dashed and solid lines. 
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and the difficulty of Fourier transforming reflectivities 
that have only been measured over a limited range of 
momentum transfer. In the sequence of data analysis, 
the latter comes first and we discuss it first. Glatter 
(1977) developed the method of the indirect Fourier 
transform (IFT) for inverting small-angle scattering data, 
in which, instead of doing the Fourier transform directly, 
the coefficients of the Fourier components of a suitably 
chosen basis set are determined by fitting them to the 
data. This avoids the distortion of the resulting Fourier 
transform by truncation errors. Pedersen has adapted this 
to the reflection experiment so that the IFT is applied to 
P(1)(n) as obtained from (18) to obtain the Patterson 
of the derivative of the scattering-length-density profile, 
P(1)(z). Pedersen then assumes that the P(1)(z) profile 
will be a smooth function and shows that, for his 
purposes (mainly the analysis of insoluble monolayers 
on water), cubic B splines form more suitable basis 
functions than periodic functions. Pedersen has then 
adapted the same method of fitting the coefficients 
of the members of a basis set to do the square-root 
deconvolution of P(1)(z) to obtain p(l)(z). This is the 
stage at which the phase problem has to be solved. The 
justification of the procedure is based on the successful 
analysis of a number of test data but, unfortunately, 
examples where the solutions might be unstable, such 
as scattering-length-density profiles close to the profiles 
of Fig. 2, have not been tested and so it is difficult 
to judge the effectiveness of the method in terms of 
uniqueness. As admitted by Pedersen, it is also difficult 
to see that the method offers much advantage over direct 
fitting procedures. One important feature, however, is 
that the initial indirect Fourier transform ensures that 
the resolution of the experiment is included correctly. 
A limitation is that the method cannot at present be 
used for the simultaneous fitting of different reflectivity 
profiles from a given structure. Pedersen & Hamley have 
later extended the method to obtain P(1)(z) using basis 
functions of either cubic splines or periodic functions in 
conjunction with the exact optical matrix reflectivity. 

Singh, Tirrell & Bates (1993) have independently 
developed the indirect Fourier transform technique to 
analyse reflectivity data from periodic structures. The 
method is essentially the same as that of Pedersen except 
that periodic (sine and cosine) functions are used as 
the basis set and, rather than obtaining the coefficients 
of all members of the basis set in one step, Singh 
et al. start by using the lowest Fourier components 
and progressively include higher terms. Although the 
kinematic approximation is used to determine the Fourier 
coefficients, they are refined at each stage by fitting 
the observed reflectivity exactly using the optical matrix 
calculation. As with the Pedersen method, the authors 
cannot prove that they have a unique solution but can 
only justify the method by its success in reproducing 
the correct structure from simulated data. However, the 

difference from Pedersen's work, which considers non- 
periodic structures, is that Singh et al. have found that 
their method is essential for the successful analysis of 
the multilayer systems that they are studying. This is 
because there are too many choices of model to be tested 
and the procedure of guessing a structure, comparing 
calculated and simulated profiles etc. is a hopeless task. 
The use of the indirect Fourier transform, especially 
in stepwise fashion, is effectively a means of making 
that choice rapidly and efficiently. This is greatly helped 
by the different effects of the sine and cosine terms in 
the basis set on the shapes of the Bragg peaks, which 
result from the combination of internal structure of the 
layer and its finite thickness. As the authors point out, 
they have no way of confirming the uniqueness of the 
structure rigorously but consistency of their determined 
structures with a priori knowledge of the sample gives 
strong support to the claim of uniqueness. 

Sivia, Hamilton & Smith (1991) have suggested that 
a reference surface be included, which would be used to 
determine the phase. If the reference surface is perfectly 
sharp then 

p(1)(z) = po~(Z-  a) + p(1)(z), (31) 

where a is the separation of the reference and the 
unknown interfacial scattering-length-density profile ~1) 
and 

p(1)(n) = poexp(ina) + p(sl)(n) (32) 

leading to 

e(l)(t¢) = p2 + ip~,)(~)l 2 
+ 2~{p(~')(tc)poexp(ina)}. (33) 

The experiment determines P(1)(n), which on Fourier 
transformation gives the Patterson function 

P(1)(z) = p~(O)  + P(~l)(z) + poP(sl)(z - a). (34) 

This now contains phase information in the third term. 
The key to the analysis is that if a is chosen to be 
large the contribution of the third term is at large z 
and is easily separated from the main Patterson term 
P(~l)(z). Thus, the phase information may be recovered 
and p(1)(z) deconvoluted to give p(1). There are obvious 
experimental difficulties and no such experiment has 
yet been performed. However, the equations above do 
show a path to the more straightforward use of isotopic 
substitution. We first apply them to another special case 
where the experiment has actually been carried out and 
where there is some possibility for applying the method 
more generally. 

Penfold, Webster, Bucknall & Sivia (1994) deposited 
a polymer layer on a magnetic substrate (Ni) and then 
did two experiments with different polarization of the 
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magnetic substrate. The scattering length of an atom 
with a magnetic moment resulting from its electronic 
configuration contains components from the nucleus 
and from the magnetic moment associated with the 
electronic motion. Differently polarized atoms therefore 
have different scattering lengths and the scattering-length 
densities for nickel in its two magnetic states are also 
different [(p+) and (p_)]. If we neglect for the moment 
any inaccuracies in the kinematic approximation, the 
difference between the structure factors for the two 
magnetization states is, from (33), 

p ~ ) _  p(j) : p~__ p2 + 2(p+ - p_) 

x ~{p~l)(n)exp(ina)}, (35) 

which on Fourier transformation gives 

(p~_- p2)6(0) + (p+ - p_ )p~ l ) ( z -  a). (36) 

In practice, it is not necessary to restrict the solu- 
tion using the kinematic approximation as above and 
the authors used the distorted wave Born approxima- 
tion (Sanyal et al., 1993) and successfully extracted 
p~s')(z-a).  

The use of isotopic substitution, or the combination 
of X-ray and neutron reflectivities from the same system 
does not usually lead so directly to ps °). For simplicity, 
we assume that the scattering-length density can be 
written in terms of a sharp P0, which is not affected by 
isotopic substitution, and a p~1), which scales with the 
scattering lengths of the isotopic species, i.e. p~sl)(z) = 
ban(1)(z). Then, using (33), we have two equations of 
the form 

ple ~issumptions about physically possible or probable 
structures or constraints imposed by other measurements 
are sufficient to ensure that the interpretation of the 
Patterson function, P(l)(z), to obtain a scattering-length- 
density profile is unique. On these occasions, direct 
Fourier transformation of P(1)(n) may be the most satis- 
factory procedure if the range of momentum transfer is 
adequate (see, for example, Pershan, 1989; Schlossman 
et al., 1991). 

4. Partial structure factors 

Most of the analyses of reflectivity data so far dis- 
cussed are aimed at producing a unique solution for 
the scattering-length-density profile. We now focus on 
the more direct determination of the number density 
profiles of the different species through the interface. 
We first consider the limitations in the interpretation of 
a scattering-length-density profile. 

In general, several species contribute to the scattering- 
length-density profile and the main purpose of the 
experiment is to determine the distribution of these 
individual species, i.e. (7) has to be solved for the 
number density-profiles, hi(Z). The simplest cases are 
those where either the scattering from all species other 
than the one of interest has been eliminated, e.g. by 
isotopic labelling in neutron reflection, or when one 
species dominates the scattering, e.g. a heavy ion 
in X-ray reflection, when ni(z) = pi(7.)/bi. In more 
complicated cases, there may be relations between the 
ni (z) that make it possible to solve (7). For example, if 
two of the components being examined are part of the 
same molecule, then stoichiometry requires that 

P~l)(n)/b2 = po/b 2 + In(1)(n)[ 2 

+ (2/ba)~{n( ' ) (n)poexp( ina)} .  (37) 

As P0 is known, In(1)(~)12 and ~{n(1)(n)poexp(i~a)}  
can be determined separately by solution of the two 
simultaneous equations and hence the phase information 
is recovered to give a unique structural profile. We also 
note that a similar experiment can be done with X-rays 
by working close to an X-ray absorption edge and using 
the anomalous scattering of a suitable atom (Sanyal et 
al., 1993). In general, the simplifications made above 
are not always appropriate and, although having two 
profiles must improve the phase situation, model fitting 
may still be necessary to solve the structure, rather 
than direct inversion as in (36). The division of the 
reflectivity profile into partial structure factors, which 
we now describe, is generally a more satisfactory way 
of handling more than one reflectivity profile from a 
given structure. 

Although we have emphasized the inherent ambiguity 
caused by the phase problem, it is often the case that sim- 

f nl (z) dz -- f n2(z) dz. (38) 

A second widely used constraint is often constructed by 
estimating the molar volume of two fragments consti- 
tuting a layer and then assuming that the layer is close 
packed when 

f ~n l  (z) dz + f ~nz(z) dz = V. (39) 

These constraints are, however, difficult to use except 
with very simple model structures and the determination 
of a single scattering-length-density profile, no matter 
how accurate, may not be sufficient for the solution 
of (7). In many cases, this ambiguity may be more 
serious than any ambiguity arising from the loss of phase 
information or lack of resolution and yet it has been 
largely neglected. For a more detailed discussion of this 
point, the reader is referred to Lu & Thomas (1995). 

The use of partial structure factors provides a basis for 
discussing the reflectivity in terms of the contributions 
from different components in the layer. Substituting (7) 
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into (18) gives 

R = (167r2/n4) [ s~. h2/o0) ] ,  (40) uj "W -'}- ~ ~ 2bibjhb 1) 
j i<j 

where the h)) ) are the self  partial structure factors given 
by 

h)))(~) = In)')(~)l 2 (41) 

and the h ~.1) are the cross partial structure factors given q 
by 

h(l) ~{n!l)(g)n)l)(~) }. (42) ij ( ~ ) =  

The r/s(l)(n) are the one-dimensional Fourier transforms 
of n)l)(z), the gradient of the average number density 
profile of group j in the direction normal to the surface, 
given by (20) but with n replacing p. Just as for the 
equations in p, there is a relation between h(l)(n) and 

n2h(~;) = h(l)(~). (43) 

A self partial structure factor is thus related to the cor- 
responding number-density profile in exactly the same 
way as the p(1)(n) is related to the Patterson P(1)(z) 
and the problems of going from one tO the other are 
amenable to the same methods of analysis. However, 
the cross partial structure factors defined by (42) offer 
new possibilities in the analysis. The shift theorem of 
Fourier transforms (Bracewell, 1978) states that if a one- 
dimensional distribution is moved by 6 then its Fourier 
transform is changed by a phase factor, exp(in6), i.e. if 

n;(z) = n i ( z -  6), (44) 

t hen  

n[(e;) = ni(Eo ) exp(iar). (45) 

Thus, (42) becomes 

h~l)(a) = ~{n}l)(a)n~sl)(a)exp(iarij)},  (46) 

where 60 is the separation of the two distributions. Im- 
portant special cases occur when ns~l)(a ) and/or n}l)(g) 
are entirely real or imaginary. If they are both real or 
both imaginary, then 

h(1)(g)  --  n}l)(g)nsf l )(g)  cos(t~6ij),  (47) 

and if one is real and the other imaginary, 

h~l)(m) = n~l)(m)nj(1)(m) sin(m6ij).  (48) 

Equations (47) and (48) can be further simplified to 
obtain 

(1) (1) h/~l)(/~) --- -t--[h i (l~)h) (/~)11/2 cos(gr~/)  (49) 

and 
h~))(~) = -t-[h!l)(~)h)l)(~)] 1/2 sin(~6ij), (50) 

where the 4- arises from the uncertainty in the phase. The 
case of ns~l)(e;) real corresponds to a distribution nj(z) that 
is symmetrical about its centre, i.e. an even function, and 
ns0)(~ ) imaginary to an odd distribution. Many fragment 
distributions across interfaces approximate closely to 
these two limits and (49) and (50) then give a means of 
determining the separation between pairs of distributions 
without either doing the Fourier transform or making 
specific assumptions about the type of distribution (other 
than that they are even or odd). Equation (46) strictly 
holds only if there are no correlations in the plane of 
the interface, i.e. they must depend on no coordinate 
other than the single spatial coordinate, z. We discuss 
this question further in the section on roughness. 

In what follows, we apply the partial-structure-factor 
method to a surfactant layer using a labelling scheme 
that divides the adsorbed molecular layer into nine frag- 
ments. The surfactant is hexadecyltrimethylammonium 
bromide [C16H33N(CH3)3Br, abbreviated to C16TAB], 
which forms a monolayer at the air/water interface 
in equilibrium with bulk solution (Lu, Li, Smallwood, 
Thomas & Penfold, 1995). The surface concentration 
can be varied by changing the concentration of the bulk 
solution but here we consider only one surface concen- 
tration since our purpose is to examine the procedure 
of analysing the data. The resolution with which the 
structure of the adsorbed layer can be probed depends 
in part on the instrumental resolution and in part on 
the extent to which the layer can be broken down into 
identifiable labels. For C16TAB, we have divided the 
layer into ten labelled species, the eight consecutive 
C2H4 fragments, the N(CH3)3 head group and the water. 
To illustrate the method, we start by considering the 
molecule as consisting of two labels, the C16 chain as 
a whole and the head. For this labelling scheme, the 
reflectivity can be written as 

e = (1671-2/t~4) [h2h(1) /,,2/~(1) t,, c ,,c¢ + b 2 h~t~ + uw,,ww 

--(1) (1) 2bhbwh~l)], 1 q- 2bcbhnch -b 2bcbwhcw + ( 5 )  

where the subscripts c, h and w denote chains, heads 
and water, respectively. To determine the six partial 
structure factors in (51) requires six measurements of 
the reflectivity with different values of bi. The most 
obvious combinations to choose in neutron reflectiv- 
ity are the three measurements when each of be, bh 
and bw are respectively zero since this can easily be 
achieved by suitable hydrogen/deuterium substitution. 
When protonated, the heads have a scattering length 
almost exactly equal to zero. For typical hydrocarbon 
chains, it is necessary to mix H/D components in a molar 
ratio of about 10:1 and water also has a zero scattering 
length when it is about 10% heavy water (we refer to 
this as null reflecting water, abbreviated as NRW). Each 
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measurement with two of the bi z e r o  gives one self 
partial structure factor directly. The three cross partial 
structure factors are obtained by combination of these 
measurements with others where two or m o r e  bi are non- 
zero. We discuss below how errors in the determination 
of the structure factors may be propagated by using 
contrast conditions that are not sufficiently distinct and 
we also discuss the problems of changes of the chemical 
structure associated with isotopic substitution. For the 
moment, we assume that neither of these presents any 
difficulty. 

When the six partial structure factors are known, 
the three separations between them may be determined 
directly using (49) and (50) because, in dilute solution, 
both the head and chain distributions must be even to a 
first approximation and the water distribution is odd to a 
first approximation. The determination of these distances 
is shown in Fig. 5. Although there is an uncertainty in 
the sign in the application of the two equations, the 
constraint that 

6or = 6oh + 6hw (52) 

with the physical knowledge that the chain must be on 
the air side of the interface solves the phase problem for 
this particular structure. The values of the separations 
yield important structural information about the layer 
that has hitherto not been available and at a resolution 
of about 1/~. This resolution is much higher than appar- 
ently possible from the usual criterion of 7r/~;max, which 
is only about 10/~ for neutrons, although much higher, 
about 2.5 A, for X-rays. We discuss this further below. 

The complete analysis in terms of the six partial 
structure factors of (51) requires the fitting of the self 
partial structure factors. These have to be analysed 
either by Fourier transformation by one of the methods 
described above or by model fitting. However, because 
number-density distributions of fragments are a more 
natural way of describing structure across an interface 
than scattering-length-density profiles, it is usually easier 
to generate physically realistic models for the partial 
structure factors than for the Fourier transform of a 
complex scattering-length-density profile. We illustrate 
this for the CI6TAB layer, starting with the fitting using a 
multilayer model in conjunction with the optical matrix 
calculation. 

The most successful model fitting of the scattering- 
length density of the C I 6 T A B  and similar surfactant 
layers has so far been to use a two-uniform-layer model, 
the uppermost layer consisting of chains only and the 
lower layer of a mixture of head groups, water and 
a fraction of the hydrocarbon chains (Simister, Lee, 
Thomas & Penfold, 1992b). The constraint of close 
packing (39) is imposed on the lower layer, for which it 
is necessary to estimate the volumes of the components. 
The set of six isotopic data is best fitted with the structure 

shown in Fig. 6(a). It would be possible to introduce 
roughness at any of the three interfaces, and this would 
have some effect on the final parameters obtained for 
the layer, but the effect is small and, at the rather low 
resolution of the neutron experiment, is usually not worth 
doing. The situation is different in an X-ray reflection 
experiment where the resolution is much higher. 
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Fig. 5. The three cross partial structure factors of Cl6TAB and the best fits 

(continuous lines) using equations (49) and (50) for (a) chain/head, 
(b) chain/water and (c) head/water. The separations of the respective 
distributions are 6ch = 8.0 (5)/~,, 6cw = 9.0 (5) A and 6hw = 1 (1) A. 
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In applying the partial-structure-factor method to this 
system, we first note that the number-density distribu- 
tions of chains and heads will be approximately sym- 
metrical distributions and the natural choices for their 
distributions are then a uniform layer, a uniform layer 
roughened on either side or a Gaussian. The dimensions 
of typical surfactant layers are such that, within the reso- 
lution of the neutron experiment, these models cannot be 
distinguished (Fig. 7). Although this means that there are 
limits to the accuracy of the description of the shapes of 
the distributions, the widths are accurately characterized. 
This is not necessarily the case where a more complex 
layer model has been fitted, when limitations in the 
description of the other components in the layer may 
affect the accuracy of the modelling of the fragment 
in question. We show the structures obtained from the 
best fits of the partial structure factors to uniform layers 
in Fig. 6(b) and to Gaussian distributions in Fig. 6(c). 
The water has been assumed to be a tanh distribution 
(25) for the latter and a step function for the former. 
Note that the determination of the separation between 
the distributions is not affected by the choice of uniform 
or Gaussian distributions, which is consistent with the 
analysis in terms of (49) and (50). We show below 
that the Gaussian distribution is more appropriate for 
these surfactant systems but it is interesting here to 
compare the three 'experimental '  structures of Fig. 6 
with a computer simulation of the same system shown 
as dashed lines in each of Figs. 6(a), (b) and (c) (BOcker, 
Schlenkrich, Bopp & Brickmann, 1992). The simulation 
is in remarkably good agreement with the structure 
shown in Fig. 6(c). The block structure of the surfactant 
layer is unsatisfactory either because, as in (a), it gives 
a somewhat unphysical distribution of the chains or 
because, in (b), it violates close-packing requirements 

in a narrow region. Either of these problems could be 
solved by using a finer subdivision of the layer or by 
the judicious use of roughness, but these introduce more 
fitting parameters. Division of the layer into its two 
structural units, head group and hydrocarbon chain, is 
the simplest description to use as a start. 

It is particularly easy to make use of stoichiometric 
constraints in the fitting of partial structure factors. For 
example, for Gaussian and uniform layer-number distri- 
butions, the partial structure factors are, respectively, 

h!/1)(a) = (a2/A2) exp(-o'2t~2/8) (53) 

h~/1)(t~) = (4/aZ'r 2) sin2(~'r/2), (54) 

where A is the area per molecule, which stoichiometry 
requires to be the same for each fragment in the layer. 
We will show below that, for these soluble surfactants, 
the correct distribution is a Gaussian and from now on 
we will not consider uniform-layer models. 

The complete analysis of the structure of the C16TAB 

layer using the partial-structure-factor method is then 
to fit the self partial structure factors with Gaussian 
distributions for the chain and head terms and a tanh 
profile for the solvent, and to fit the cross terms using 
the relatively model independent treatment based on (49) 
and (50) to obtain the 6 0 . There are two limitations of 
this procedure. Although there are only two independent 
6ij and therefore it is strictly necessary to determine only 
two of the cross terms in (51) and hence make only five 
measurements altogether, it is not in general possible 
to determine a chosen subset of cross partial structure 
factors without making all six measurements. It is a 
coincidence that it is possible with C16TAB because the 
head scattering length can be made exactly zero, but it is 
not possible for molecules such as C12H 25(OC2H4)mOH, 
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Fig. 6. Number-density distributions of chains, heads and water in the Cl6TAB layer at its c.m.c. (area per molecule = 45/~2) from the best fits 

of (a) a two-uniform-layer model to the reflectivity, (b) single-block models to each of the partial structure factors, and (c) of Gaussian (head 
and chain) and tanh profiles (water) to the partial structure factors. The dashed lines are the same in each part of the diagram and are the 
number-density distributions obtained from a computer simulation on CI6TACI at the same area per molecule (B6cker, Schlenkrich, Bopp & 
Brickmann, 1992). The reference position has been chosen to be at the centre of the head distribution. 
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for example. The second limitation is that if one of 
the six data sets contains errors these will propagate 
through the solution of the simultaneous equations to 
give errors in one or more of the 6ij and hence prevent 
a.satisfactory analysis. The first of these problems can 
be solved, and the second minimized, by using partial 
structure factors to describe the reflectivity, but then to fit 
the set of reflectivities directly using the 6ij as adjustable 
parameters, together with the parameters required to 
describe the width and shape of the self partial structure 
factors. This is the basis of the method used by Lee & 
Milnes (1995), which we now describe. 

The reflectivity is given by (51) with six independent 
adjustable parameters, ac, crh, ~w, 6ch, 6~ and A, the 
area per molecule, and becomes analytic if we assume 
the number distributions to be Gaussians for the chains 
and heads, and a tanh profile for the water. Instead of 
determining each of these parameters separately after 
solving (51) for the partial structure factors, we do a non- 
linear least-squares fit of the six unknown parameters to 
the whole set of reflectivities, minimizing the quantity 
F(i, r;)2, where 

F(i,n,) = E Y ] [ l ° g R o b s ( i , t ~ )  -- logRc~ac( i ,r ; ) ] .  ( 55 )  
i 

The standard errors in the fitting procedure are the 
square root of the variances of the regression coefficients 
and the variances are estimated numerically from the 
Jacobean matrix at the solution. We extend the lower 
range of r; for which the fitting may be done by using 
(30) to modify the kinematic reflectivity. The validity of 
the use of (30) near the critical angle depends on the 
dimensions of the layers being studied. For surfactant 
layers at the air/water interface, all the structure factors 
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Fig. 7. Failure to distinguish between a Gaussian (dashed line) and a 
uniform layer (continuous line) for a monolayer of Cl2E3 (points) 
adsorbed at the air/liquid interface. 

are either close to zero or, in the case of the water, 
approximately constant in the region of ~c. In these 
circumstances, a relatively low accuracy is required in 
any formula for the correction of the kinematic reflec- 
tivity and therefore the calculation of the reflectivity is 
essentially exact. 

Each error determined from the Jacobean is a measure 
of the width of the overall minimum with respect to each 
of the minimized parameters and gives a useful guide 
as to how well the data determine a given parameter. 
The true error would also contain the error arising 
from the statistical quality of the data, which we have 
not included. Thus, the errors quoted in the tables 
below are only those appropriate to perfectly determined 
reflectivity profiles. In fitting a single reflectivity profile 
by least squares, it is usual practice to include the 
statistical errors at each measured point. However, as 
we have mentioned earlier, there are several factors 
that make the statistical errors much less dominant and 
more difficult to quantify as the number of data sets 
increases. The problem arises from systematic errors in 
the reflectivity profiles, arising from calibration error, 
sample contamination, small isotopic effects, inaccurate 
determination of isotopic composition and inaccurate 
background subtraction, some of which are discussed 
further below. The statistical errors in a profile vary 
enormously because of the rapid decay of the reflectivity 
with momentum transfer and become insignificant at 
low t~. The situation is further complicated because the 
reflectivity at low ~ when the solvent is D20 is much 
higher than when it is NRW, and therefore has a very low 
statistical error, but it is almost completely insensitive 
to the structure of the layer at the dimensions being 
considered here. If there were no systematic errors, this 
would not present any difficulty and the statistical errors 
could be included to give the true error. However, in 
the situation described, the inclusion of the statistical 
weighting, by giving undue weight to the low-r; data, 
may prevent a sufficiently rigorous fit to the high-r; data, 
which contain the important structural information. The 
quoted errors are therefore underestimates of the true 
error but give a good guide to their likely magnitude. 

The results of such a fit to the CI6TAB data are 
compared with the results of fitting the individual partial 
structure factors in Table 1 (Lee & Milnes, 1995). The 
agreement between the two methods when the same set 
of six different reflectivity profiles are fitted is within 
the quoted error except for the width of the head-group 
distribution, where there is a significant discrepancy. As 
will be shown below, the width of the head group can 
be determined independently by a completely different 
experiment and is 14.0 (5)/~, whereas the least-squares 
fitting gives 17.8 (5)/~. The discrepancy was found to 
result partly from one poor set of data and partly because 
it is the parameter least well defined by the experiment. 
We discuss this further below. 
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Table 1. Structural parameters of a CI6TAB layer determined by two methods (/~) 

A (A 2) ec (A) trh (A) ( ( A )  6ch (A) 6cs (A) 6hs (A) 

Partial structure factor 43.0 (10) 16.5 (20) 14.0 (30) 6.0 (10) 8.0 (5) 9.0 (5) 2 (1.5) 
Least squares 44.5 16.6 (3) 17.8 (5) 7.6 (2) 8.7 (8) 9.3 (2) 0.6 (6) 

Table 2. Structural parameters of a C16TAB layer determined by least-squares fitting using different data sets 

Dam sets u s ~  ac (A) ah (A) ( ( A )  6cs (A) 6~ (A) (F(i, q)) x 1~ 

A ,B ,C ,D,E ,F  16.6 17.8 7.6 9.3 0.6 5.7 
B, C, D , E , F  16.6 17.8 7.6 9.3 0.6 6.3 
A, C, D , E , F  16.3 16.1 7.4 9.5 0.0 6.3 
A,B,  D , E , F  16.2 26.4 7.4 9.3 1.4 4.2 
A,B,  C, E , F  16.7 17.5 7.5 10.2 1.6 5 . 2  
A,B,  C, D , F  16.5 17.5 7.7 8.6 1.8 3.7 
A,B,  C , D , E  15.9 17.8 6.7 9.4 0.6 5.2 
A,B,  C, D , X  18.0 14.0 8.0 9.4 1.4 3.7 

The labels refer to the data sets (A) dC16hTAB in NRW, (B) dCI6drAB/NRW, (C) '0'C16drAl/NRW, (D) dCI6hTAB/D20, (E) dCl6drAB/D20, 
(F) hCI6dTAB/D20, where NRW refers to null reflecting water and '0' means that the H/D ratio in the hydrocarbon layer is such that it is also 
null reflecting. X is the X-ray reflectivity from hCI6hTAB/H20. 

When the whole set of data is fitted it is no longer 
necessary to make the six isotopic substitutions to obtain 
the six partial structure factors. All that is needed is 
that enough data are available to determine the set of 
unknown parameters. The discussion of (52) showed that 
at least one of the six reflectivity profiles was not needed 
but, given that each partial structure factor contributes at 
different levels as e; varies, it is possible that fewer than 
five might determine the structure adequately. Which 
ones is not easy to decide without prior knowledge 
of the structure. In Table 2, we give the results of 
fitting sets of reflectivity profiles less than the six by 
least squares. Interestingly, any five of the six profiles 
give a set of parameters similar to those from the six, 
except for the set where the profile with only the head 
group deuterated is omitted (C), when the fitted value 
of the head-group width is hopelessly wrong. This is the 
measurement that is normally used to give ah directly. 
Of special interest is the possibility of including X-ray 
reflectivity data in the fitting scheme. Several authors 
have used parallel fitting of models to the neutron 
and X-ray profiles from the same system to determine 
the interfacial structure (Styrkas, Thomas, Adib, Davis, 
Hodge & Liu, 1994; Vaknin, Als-Nielsen, Peipenstock 
& Losche, 1991) but do not seem to have used a single 
minimizing routine. The larger ~ range of the X-ray 
profile presents no difficulty when the reflectivity is 
expressed in terms of partial structure factors. The last 
set of fitted parameters in Table 2 includes five of the 
neutron reflectivities and the X-ray data. This is not 
such a consistent fit and it is clear that the X-rays 
are introducing a little confusion into the distinction 
between chain and head groups. This is exactly as 
one would expect since the region near the chain/head 
boundary is only slightly contrasted with the water for 
the X-rays, and the bromide counterions also make a 

significant contribution to the X-ray reflectivity, which 
has not been separated from that of the head group. 
The simultaneous fitting of X-ray and neutron data will, 
in general, be of considerable value because there may 
be many occasions where significant isotope effects on 
the structure preclude the use of isotopic data. Since 
it is always posSible to obtain both neutron and X- 
ray reflectivity profiles, and it does not matter which 
isotopic species is chosen, it is interesting to try to 
assess the optimum choice for surfactant layers. For this 
purpose, we have chosen a surfactant where there is no 
contribution from counterions, the non-ionic surfactant 
C12H25(OC2H4)3OH (abbreviated to CI2E3).  

The structure of C12E3 has been determined with the 
same subdivisions as C16TAB above using six isotopic 
measurements to obtain the relevant six partial structure 
factors fLu, Hromadova & Thomas, 1993; Lu, Lee, 
Thomas, Penfold & Flitsch, 1993; Lu, Simister, Lee, 
Thomas, Rennie & Penfold, 1992). In addition, we 
have measured the X-ray specular reflectivity in the 
laboratory (Styrkas, 1994). We have observed no isotope 
effects in the surface tension of C12E3 solutions and, 
possibly because it is non-ionic, we have found it not 
only a particularly reproducible system but the surface 
excess determined from the Gibbs equation and surface 
tension agrees exactly with that determined by neutron 
reflection. Thus, the general level of accuracy of these 
measurements and their interpretation is higher than for 
C16TAB. To be set against this, the contrast between 
hydrocarbon chains, ethoxy chains and water is very 
poor for X-rays and therefore it is impossible, for 
example, to obtain the surface excess accurately from 
X-ray reflection. 

The results of non-linear least-squares fitting to the six 
neutron data sets and to the six neutron data sets with 
X-ray reflectivity are compared in rows 2 and 3 of Table 
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Table 3. Parameters of a C12E3 layer determined by fitting different data sets 

Data set A (A 2) tXc (A) tre (A) ( ( A )  6cw (A) 6ew (A) 

Partial structure factor 36 (1) 16.5 (10) 15.5 (10) 6.0 (10) 10.0 (5) 2.5 (10) 
A, B, C, D, E, F 35.8 (4) 16.6 (2) 17.3 (3) 6.0 (1) 10.3 (1) 2.6 (3) 
A, B, C, D, E, F, X 36.0 (7) 16.3 (2) 17.4 (4) 5.8 (2) 10.2 (2) 2.8 (4) 
D, surface tension 36 15.5 (5) 20.5 (38) 5.5 (5) 9.7 (5) 0.8 (11) 
X, surface tension 36 16.1 (107) 24.0 (245) 4.7 (17) 7.1 (48) 7.0 (108) 
D, X 45.1 (76) 13.1 (17) 14.6 (14) 6.6 (13) 9.2 (8) 0.7 (16) 
D, X, surface tension 36 15.7 (4) 16.5 (10) 5.4 (5) 10.0 (2) 2.6 (6) 
A, X 35.9 (15) 17.9 (7) 11.1 (22) 1.9 (12) 10.1 (8) 4.9 (16) 

The labels refer to the data sets (A) dCl2hE3 in NRW, (B) dC12dE3/NRW, (C) hCI2dE3/NRW, (D) dC12hE3/D20, (E) dC12dE3/D20, (F) 
hCI2dE3/D20, where NRW refers to null reflecting water. X is the X-ray measurement on hCl2hE3/It20. The partial-structure-factor method fits 
the individual partial structure factors obtained directly from the reflectivity, the remainder have been fitted to the whole set of reflectivities by 
least squares. 

3, the analysis in terms of the partial structure factors 
being given in row 1. The agreement is good, apart 
again from the head-group width, and the introduction 
of the extra X-ray set of data makes little difference 
to the final parameters. The question now arises as to 
which would be the best isotopic species to study on 
its own, i.e. by surface tension, X-ray and a single 
neutron reflection measurement. Since we know that 
there are no significant isotope effects in this system, 
we assume for what follows that the X-ray reflectivity 
is the same for all isotopic compositions. In a situation 
where isotope effects were expected, the correct X-ray 
measurement would have to be made. The most sensitive 
single measurement for obtaining the structure from a 
neutron reflection experiment should be dC19hE3/D20 
(designated D in Table 3) because there is good contrast 
between the outer deuterated chain layer, the middle 
partially deuterated layer (ethylene glycol and D20) 
and the D20. However, such a measurement could not 
give an accurate model-independent value of the surface 
excess. Taking this measurement alone with the known 
surface excess gives the set of parameters in row 4 
of Table 3. The large error in o.e indicates that this 
quantity is completely unreliable, as indicated by its 
value, and related to this is the obviously incorrect 
value of 6ew. However, the chain width, solvent width 
and chain-solvent distance are accurately determined 
by the single reflectivity measurement with the known 
surface area. Not surprisingly, the X-ray reflectivity, 
which is not very different from that of pure water, does 
not really determine any of the parameters successfully 
(row 5) as manifested by the large standard errors 
throughout. Combining the two data sets D and X 
without constraining the surface area also fails (row 6) 
but the combination of D, X and the known surface 
area gives a set of structural parameters within error 
the same as obtained from the full set (row 7). This 
is clearly a case where the choice of the right isotopic 
species for the single neutron measurement can be used 
in conjunction with a not very promising X-ray profile 
and surface-tension data to give a complete account of 

the structure. The correponding fits to the reflectivity 
data are shown in Fig. 8. Another combination that 
might be thought effective is dC12hE3/NRW (A) with 
the X-ray profile. This is because the X-ray reflectivity 
is most sensitive to the thickness of the region lying 
above the water, because it has a lower scattering-length 
density, and to the cross term between this layer and the 
'solution' plane. The neutron profile depends only on 
the thickness of the hydrocarbon-chain region and gives 
an accurate value of the surface excess without recourse 
to surface-tension measurements. The results from just 
A and the X-ray profile are given in the final row of 
Table 3. Whilst the results are not as good as those from 
the other binary combination because the experiment 
fails to distinguish water and ethoxy chains clearly, they 
nevertheless show that the combined techniques on the 
right isotopic species could be very powerful in less 
unfavourable situations. 

We now return to the C16TAB layer and attempt to 
reach a division of the layer sufficiently fine that the 
assumed shapes of each fragment distribution reach a 
well defined limit. Experimentally, all interfaces have 
some roughness and the shape of the distribution of an 
infinitesimal element of the layer is entirely determined 
by the function that describes the roughness, which is 
expected to be a Gaussian. This is the same argument 
as made by Denton, Gray & Sullivan (1994). Thus, if 
the isotopic labelling of the layer were sufficiently fine, 
the structure of the layer would be exactly defined by 
the similar Gaussian distribution of all the fragments and 
the set of values of the separations of the fragments. It is 
interesting to explore the level of subdivision necessary 
to achieve this for the C16TAB layer. Approximately, the 
width, o.i, of the distribution of any fragment is given by 

o .2 = l/2 + w 2, (56) 

where li is the intrinsic structural width of the fragment 
and w is the roughness. This equation assumes both 
distributions are Gaussian. The value of li will be a 
function of the length of the label. For example, if it 



J. R. LU, E. M. LEE AND R. K. THOMAS 27 

increases linearly with the number of C atoms, n, in the 
hydrocarbon chain, (56) becomes 

cr 2 = (nl)~ 4- w z. (57) 

The assumption that the distribution is always Gauss- 
ian may breakdown when the length of the fragment 
becomes sufficiently large. However, (57) is only being 
used to obtain an empirical extrapolation to small n, for 
which it should be sufficiently accurate. Fig. 9 shows 
a plot of o -2 against n 2 for C16TAB, where the head 
group (counting as one atom) is always deuterated and 
the length of the labelled carbon chain is increased in 
steps of two atoms at a time. Although the plot is not 
linear over the whole length of the chain, it gives a good 
extrapolation to a roughness of 14.0(5)A, defined in 
terms of the width of a Gaussian at 1/e of its height 
[see (24)]. The measurements show that the width of any 
fragment less than about three C atoms is approximately 
determined only by the roughness of the layer. Thus, 
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Fig. 8. Simultaneous least-squares fitting of neutron and X-ray reflectivity 
data for a monolayer of CIzE3 adsorbed at the air/water interface. The 
neutron data (a) is for the isotopic species dCl2hE3 in D20. In the 
plot of the X-ray data (b), the reflectivity from clean water is shown as 
a dashed line. The fitting parameters are those from the row labelled 
D, X, surface tension in Table 3. 

from the argument above an accurate determination of 
the layer structure can be made from a subdivision of the 
surfactant layer into elements of three C atoms or less. 
The limits on such an experiment are that the reflectivity 
depends on the square of the unit size and it may become 
too small to measure against the incoherent background. 
The errors in 6ij also become large at small separations. 
In the set of experiments we review here, we attempt to 
assess those limits. 

We use two labelling schemes with the hydrocarbon 
chain divided into labelled Ca or C2 units, respectively 
(Lu, Li, Smallwood, Thomas & Penfold, 1995). In each 
case, the labelled unit is combined in a single compound 
either with a deuterated head group, in which case we de- 
termine 6,,h, or combined with labelled solvent, in which 
case we determine 5,w, where n denotes the labelled 
fragment. In addition, we have made the combinations of 
pairs of labelled Ca units such that we also determine 5m,, 
where m and n are two different labelled units. For the 
example of the combination of single C4 and head-group 
labels, the reflectivity is given by 

-(1) g --  (167r2/t~4)[b2h(nl n) 4- b2h~ 1) 4- 2b ,  bhn,  h ] (58) 

and three measurements suffice to determine the struc- 
ture in terms of the two widths and the one separation. 
For this system, it is possible to choose either b,, or bh 
to be exactly zero so that r~,,n"(1) and hj~}, ) are determined 
directly in a single measurement. The level of the signal 
from the head group or a C4 group on its own is sufficient 
to obtain the width of the distribution but not with 
very great accuracy. It is not possible at all to do the 
experiment on a single C2 group. However, the analysis 
of (58) is still possible because the width of the C2 and 
Ca distributions are determined by the roughness of the 
layer and, given that the surface coverage is identical 
for all the measurements, h~ 1) is then identical for the 
head group, all C2 groups and all the Ca groups. This is 
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Fig. 9. The plot of the square of the thickness (or2) versus the square 
of the chain length (N 4- 1)2, expressed in terms of the number of 
C atoms, N, for a monolayer of CI6TAB adsorbed at the air/water 
interface. The intercept gives the square of the roughness of the layer, 
14 (1)/~. The slope is related to the projection of the chain along the 
normal direction. 
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Table 4. Parameters o f  a C16TAB layer f rom the partial structure factors 

(a) (E.s.d. 1 A,) (b) 

64h(1 ) 2.5 2.5 64w(1) 
64h(2) 7.5 6.5 64w(2) 
64h(3) 9.5 8.9 64w(3) 
64h(4) 12.0 11.8 64w(4) 
544(1--2) 4.0 4.0 
544(1--3) 7.5 6.4 
544(1-4) 10.5 9.3 
544(3-4) 2.0 2.9 

(a) (E.s.d. 2/~) (b) 

62h(1 ) 1 1.3 62w(1) 
62h(2) 4 3.6 62w(2) 
62h(3) 5 5.5 62w(3) 
62h(4) 6 7.4 62w(4) 
6~(5) 7 8.4 62w(5) 
62h(6) 8 9.3 62w(6) 
62h (7) 11 11.2 62w(7) 
62h(8 ) 12 12.4 62w(8 ) 
62h(inner) 4.0 (10) 3.7 66w 
6ch 8.5 (10) 8.0 6cw 
6hw 2 0.7 
588 6 5.4 68h 
62h(outer) 12 (1) 11.9 

(a) (E.s.d. 0.8 A,) (b) 

2.7 3.2 
7.2 7.2 

10.2 9.6 
12.5 12.5 

(a) (E.s.d. 2/~) (b) 

2.5 2.0 
4 4.3 
6 6.2 
7.5 8.1 
8 9.1 
9 10.0 
11.5 11.9 
13 13.1 
5.5 4.4 
9 8.7 

5.5 (10) 4.7 

The labelling of the fragment is (1), (2) etc., where (1) is the group nearest the head group. (a) refers to the values directly determined from the 
partial structure factors, (b) are the values obtained from a least-squares fit of the nine independent structural parameters to the whole set of data. 

indicated by the results of Fig. 9 and confirmed by direct 
measurement.  In these circumstances, the reflectivity is 
given by 

,_2, L(1)2bnbhh(nl)] (59) R = (167r2/~4)[(bnZ + Vh/nhh + 

and h~ 1~ can be further simplified to 

h(1) nh = -t- h (hlh ) COS e;6~h . (60) 

In principle, once the h ~  ) profile has been determined 
only a single measurement  with the two deuterated labels 
in place is necessary to determine the appropriate 6nh 
value. In practice, much improved statistics are obtained 
by obtaining an average h ~  ) by summing over the inde- 
pendently determined profiles of the Ca and head-group 
fragments or, better still, by taking h~, ~ to be determined 
by a Gaussian distribution with the extrapolated width 
from Fig. 9. From the determination of the appropriate 
reflectivity profiles, the values of the various 6nh, 6nn 
and 6,,w given in Table 4 were determined. Given that 
the structure can be defined in terms of only nine 
independent  separations, this represents a considerable 
overdetermination of  the structure. To obtain a final set 
of parameters, the set in Table 4 were fitted by least 
squares to give the global set of nine parameters in 
Table 5. The results in Table 5 have been divided into 
two groups, those obtained only from the C4 fragments,  
which lead to only five independent separations, and 
those from the C2, which lead to nine. An example of 
the fitted results is given in Fig. 10 for the cross partial 

structure factors between the different C 4 fragments and 
the head group. These demonstrate the sensitivity of the 
reflectivity to the relative position of the Ca fragment  and 
head group. Examinat ion of  the partial structure factors 
involving the C2 fragments showed them to be of rather 
poor statistical quality and therefore the 62h and 62w are 
much less accurate than the corresponding 64, quantities. 

× × 
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Fig. 10. The cross partial structure factors between different C4 fragments 

and the head group for a monolayer of C:6TAB adsorbed at the 
air/water interface. The four structure factors have been fitted with 
equation (49) using Gaussians of width 14/~, for the chain fragment 
and head distributions and values of 64h(n) of X 2.5, + 7.5, /X 9.5 
and o 12 (1)/~ for n = 1, 2, 3 and 4, respectively. The value of n 
denotes the position of the C4 group, 1 being nearest the head group. 
Error bars are only shown for n = 4 for clarity. 
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Table 5. Parameters of a C16TAB layer determined by direct fitting of the reflectivity and by least-squares fitting of 
the parameters in Table 4 (values in ,~ unless otherwise stated) 

(a) C2 fragments labelled 

Label Reflectivity Partial structure factor 

trc2 13.8 (5) 14 (0.5) 
rrh 13.7 (5) 14 (0.5) 
( 6.9 (2) 6.0 (10) 
62w(8) 13.4 (6) 12.4 (10) 
62w(7) 12.1 (7) 11.2 (10) 
62w(6) 10.2 (8) 9.3 (10) 
62w(5) 10.0 (7) 8.4 (10) 
62w(4) 7.8 (7) 7.4 (10) 
62w(3) 7.0 (8) 5.5 (10) 
62w(2) 4.1 (10) 3.6 (10) 
62w(1) 2.3 (I0) 1.3 (10) 
6hw 0.3 (1) 0.7 (5) 
A (/~2) 44.9 (7) 45 (1) 

(b) C 4 fragments labelled 

Label Reflectivity (a) Reflectivity (b) Partial structure factors 

Oc4 12.0 (5) 14 14 (5).51 
crh 9.8 (5) 14 14 (5) 
( 6.0 (2) 6.2 (2) 6.0 (10) 
b4w(4) 13.0 (3) 12.7 (3) 12.4 (5) 
64w(3) 11.1 (2) 10.5 (2) 10.0 (5) 
64w(2) 8.5 (3) 7.6 (3) 7.0 (5) 
b4w(1) 3.8 (3) 3.3 (3) 2.6 (10) 
~hw 0.1 (2) 0.2 (2) 0.2 (5) 
A (/~2) 46.4 (7) 43.0 (5) 45 (1) 

The reflectivity (b) fits are obtained with the constraint that the thickness of the C 4 unit and the head group is 14/~. The labelling of the fragment 
is (1), (2) etc., where (1) is the group nearest the head group. 

This shows that at the signal levels presently available in 
neutron reflectometers the resolution is limited to groups 
containing about four C atoms, although it should be 
noted that the situation is sensitive to the coverage. 

It is clear that in the determination of the 6ij directly 
from the individual partial structure factors more weight 
is given to some profiles than to others. Thus, the 
average hJ~J, ~ profile is used in a large number of the 
determinations. It might be thought preferable to give 
equal weight to each reflectivity profile and this can 
be achieved using the least-squares fitting of the nine 
independent separations, the single value of the width 
of a small fragment, the area per molecule and the 
width of the solvent distribution, ~, to the complete set 
of reflectivity profiles. The results of this simultaneous 
fitting to 45 reflectivity profiles are also given in Table 
5 and the agreement between the two procedures is seen 
to be excellent. As would be expected from fitting such 
a large set of data, it is very easy to be trapped in 
false minima and it is necessary to impose a number 
of constraints to ensure rapid progress towards a global 
minimum. Particular difficulty was introduced by the 
C2 fragments because the accuracy of the data and the 
resolution of the experiment was such that the separation 
of adjacent units was somewhat uncertain. The first 
constraint to circumvent this problem was to make the 
restriction that each successive C2 unit in the lower part 

of the layer (nearest the water) was further from the 
water than the preceding group, i.e. there is no back- 
folding in the lower eight C atoms. The second constraint 
was that the distance between adjacent Ca units could not 
exceed the known bond distances in the fully extended 
molecule. Finally, a restriction was put on the packing 
at any point in the layer, that it could not exceed a 
volume fraction 10% more than unity. This has no effect 
on the dimensions of the chain, but is found to have a 
slight effect on the position of the solvent dividing plane. 
For the technical details of how the volume packing 
constraint is introduced, the reader is referred to Lee 
& MiMes (1995). 

The results of the least-squares fitting to the 45 
reflectivity profiles is summarized by the parameters 
for the C2 fragments in Table 5(a) and for the smaller 
number of profiles appropriate to the division into C4 
units in Table 5(b). The agreement between the fitting 
of each partial structure factor and of the whole set of 
reflectivities in Table 5(a) is within error, although the 
least-squares results give systematically larger values of 
6nh. This may be a coincidence given the large errors. 
In Table 5(b), the least-squares fitting in column 1 
[reflectivity (a)] gives systematically larger values of the 
8,,h and two cr values that are much too low. Since both 
cr values are known independently, and accurately, from 
the plot of Fig. 9, we have repeated the fitting with both 
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(r constrained to 14/~, to obtain the set of parameters 
in column 2 [reflectivity (b)]. The agreement with the 
values determined from the partial structure factors is 
now very much better. It should be emphasized that we 
are not necessarily seeking good agreement; the purpose 
being to devise as objective as possible a procedure for 
fitting the data, but one that takes fully into account 
the strengths and weaknesses of the experiment. The 
use of these constraints will be further discussed under 
Resolution and systematic errors below. Finally, we 
show the least-squares fits to the set of reflectivities from 
'O'CamdCa'O'C12-amhTAB in D20, where '0 '  indicates 
a scattering length of zero. These are dominated by the 
separation of the labelled Ca group and the mid-point 
of the D20 distribution ('the solvent plane'). As for the 
partial structure factors in Fig. 10, the.reflectivity can 
be seen to be very sensitive to the position of the Ca 
group, the interference becoming more pronounced as 
the separation increases. 

Given that we have assumed a Gaussian distribution 
for the chain as a whole both in fitting to the self 
partial structure factors and in using (49) and (50), it is 
interesting to assess that assumption. The distribution of 
the chain as a single unit can be determined by building it 
up from the distribution of smaller fragments and their 
known separations. This can be approached in several 
ways. Although the limiting shape of the distribution 
of a small fragment is almost certainly Gaussian, it is 
not necessary to assume this. It could be taken to be a 
uniform layer and this makes no significant difference 
to the derived shape of the whole chain. In Fig. 12, 
we construct the chain using the parameters of Table 5 
with either Gaussian (a) or uniform monolayer fragments 

(b). The dashed lines in the figure show for comparison 
the distributions obtained by the simpler analysis of Fig. 
6(c). It can be seen that the more accurate distribution is 
very slightly skewed because the chain is more vertically 
aligned in the region where it starts to overlap the 
water and head-group distributions. However, a Gaussian 
remains a very good approximation for the overall chain 
distribution. This is important for the validity of the 
assumption that chain and head are described by even 
functions, which makes the analysis via (49) and (50) 
possible. 

5. The resolution of the reflection experiment 

The normal criterion for the resolution of a scattering 
experiment is that it is determined by the maximum 
momentum transfer, i.e. 7r/amax, which for neutrons, 
since gmax is typically about 0.3/~-1, corresponds to a 
rather poor resolution of about 10/~. The resolution of 
the X-ray experiment is up to about three times better. 
The claim implied by the discussion in the previous 
section is that the distribution of a fragment can be 
determined with a considerably higher resolution than 
7r/~;max and we now demonstrate that this is the case. 

The argument that is used to define the resolution of 
a reflection experiment is based on a standard optical 
argument (Reynolds, DeVelis, Parrent & Thompson, 
1989), which we adapt to the situation pertaining for the 
C16TAB layer. We assume an analytic distribution of a 
single component through the interface, for which there 
are three convenient forms, the 5 function, a Gaussian 
(24) and a uniform layer. The corresponding structure 
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Fig. 11. Part of the simultaneous least-squares 
fitting of 45 different isotopic compositions 
of a monolayer of C16TAB adsorbed 
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shown are the neutron reflectivities of 
'O'C4mdC4'O'C12-4mhTAB in D20 with m 
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factors are respectively given by 

h!l)(t~) - ~2/A2 (61) 

and (53) and (54). The smallest measurable thickness 
is determined simply by whether either of the layer 
functions can be distinguished from a (5 function. A 
reasonable approximate criterion is that the difference 
is say 50% of the value for the (5 function at nmax, i.e. 

In 2 = -cr2in /~2ax/8 (62) 

or O'mi n ~ 2.3/t~max, which is comparable with the normal 
resolution criterion of 71"/gmax. Fig. 13 compares plots of 
the structure factors for a (5 function and a Gaussian 
at the same area per molecule such that, at a typical 
/'i;ma x of 0.3/It - 1  , the Gaussian is about 50% of the (5 
function. Under the particular conditions specified, the 
experimentally determined thickness of any layer thinner 
than about 8/~ would simply be the resolution limit. We 
consider some actual data in Fig. 14 where (53) is plotted 
with three different values of or and the partial structure 
factor for the head group of C16TAB. Since only the 
head group is deuterated, the reflected signal is low but 
the thickness of the layer is just large enough for it to 
be reasonable to conclude that the thickness of the layer 
is 14 (3)/~, though the error would be larger if the area 
per molecule, which also affects the value of the partial 
structure factor, were uncertain. The statistics would be 
better for a more strongly reflecting layer and hence a 
lower thickness could be determined, but it is clear that 
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Fig. 12. Distribution of the chain for a monolayer of CI6TAB adsorbed 

at the air/water interface, calculated from the separate C2 fragments 
and the experimental values of 6 (Table 4), taking each C2 fragment 
to be (a) a Gaussian distribution of width 14/~, and (b) a uniform 
block of width 16 A. The dashed line is the experimental Gaussian 
distribution determined from the experiment when the chain is taken 
as a single unit. 

the crystallographic resolution of "ff/~max applies in a 
simple reflectivity experiment. 

When we examine the possibility of distinguishing 
two closely spaced distributions in the layer, the situation 
becomes somewhat more complicated. We use (49), (53) 
and (61) to derive expressions for the reflectivity when 
the two distributions are either identical (5 functions or 
identical Gaussians. Thus, for two (5 functions 

h(l? = to~ (~) 2~2/A2(1 + cos ~(5) (63) 

and for two Gaussians 

h(1) tot ( / , i ; ) =  2 ~ 2 / A 2 ( 1  + c o s  ~(5) e x p ( - ( : r 2 t ~ 2 / 8 ) ,  ( 6 4 )  

where we have again used (5 to denote the separation 
of the two distributions (of individual width cr) and we 
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Fig. 13. The partial structure factors for a 6 function [continuous 
line, equation (61)] and Gaussian [dashed line, equation (53)]. The 
coverage is the same in each case and the thickness is 8 ,& for the 
Gaussian distribution. At the level of signal typical of the deuterated 
head group of Cl6TAB at an area per molecule of 45/~2, the two 
functions in the figure would just be experimentally distinguishable. 
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Fig. 14. Comparison of the experimental head-group partial structure 
factor for a CI6TAB monolayer with calculated Gaussians of widths 
11/!~ (dashed line), 14/~, (continuous line) and t7/~, (dotted line). The 
area per molecule has been taken to be the same in each case. 
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have assumed the positive sign in (49) for convenience. 
Although both these functions now vary more rapidly 
with n than for the simple distributions, because the 
layer is thicker, the important question is whether either 
function can be distinguished from one of the equations 
for a single distribution, i.e. can it be concluded that 
there are two distributions, not one. In practice, this 
comes down to the question as to what n range is 
necessary to distinguish the (1 + cos ~6) term from a 
Gaussian because if we cannot distinguish the structure 
factor (63) from a single Gaussian then we shall certainly 
not be able to make the distinction when we have 
the structure factor (64). After allowing for the extra 
reflectivity from having two groups combined into a 
single Gaussian distribution, which introduces a factor 
of four into (53), we then compare (53) and (64) in 
Fig. 15. Approximately, the two types of profile cannot 
be distinguished until the cos2(n6/2)  term is close to 
zero, i.e. when 6 = 7r/n. Thus, 6min, the minimum 
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Fig. 15. The difference between two Gaussian distributions separated by 
a distance 6 and one Gaussian. The continuous line is the calculated 
partial structure factor for two Gaussians [equation (66)] separated 
by (a) 5 and (b) 10A. The dashed lines are the best fits of a 
single Gaussian [equation (53)] to the continuous lines, where the 
fitting has been chosen to be closest at low ~ because of the errors 
in the experimental data being lower in this region. (b) represents 
approximately what would be resolvable in an experiment. 

separation of two 6 functions that can be distinguished as 
two separate distributions, is approximately 7r/nm~x, and 
once again we recover the usual criterion for resolving 
two objects optically (Reynolds, DeVelis, Parrent & 
Thompson, 1989). 

The situation changes dramatically when one is able 
to make suitable variations in the contrast. Thus, suppose 
a set of three measurements has been made, which leads 
to the three component partial structure factors of either 
(63) or (64). For simplicity, we take the two Gaussians 
or (5 functions to be identical. The h!})(n) are the same 
as (61) and (53) and after subtraction we obtain the cross 
term of each partial structure factor: 

h(1)(t~) -- (t~2/A 2) cos(t~6) ij , 

= + h!])(n) cos(riB) (65) 

h~)(~) = (~Z/a2) cos(~6) exp(-crzn2/8) 

= 4- h!/1)(n) cos(t~6). (66) 

The interference term is now entirely independent of the 
shape of the distributions and therefore the criterion for 
resolving the two distributions becomes a question of 
the accuracy with which the fitting of the cos(riB) term 
to the data gives 6. There is now no problem of having 
to make a choice between different functional forms of 
the structure factor. Thus, in principle, there is no limit 
to the value of 6 and even two 6 functions only 1/~ 
apart could be distinguished, although as 6 decreases so 
the relative accuracy decreases because cos (nr) varies 
more slowly with 6 for small 6. This holds, even though 
the distributions cannot themselves be determined with 
such high resolution. In practice, the quality of the data 
may limit the accuracy and hence the resolution, but this 
is more likely to result from systematic errors, which 
we consider further below. The important conclusion is 
that, by measuring the distances between distributions, 
the resolution of the experiment can be enhanced by 
nearly an order of magnitude. The conclusions about the 
resolution are not affected by a change to even and odd 
distributions (50) other than through differences in the 
statistical quality of the data. In simple optical terms, 
the reason that the resolution can be so enhanced by 
the partial-structure-factor measurements is given in Fig. 
16. Two Gaussian distributions separated by a distance 
less than their widths are shown in Fig. 16(a) and the 
sum of the two (Fig. 16b) can also be fitted with a 
single Gaussian within error. It is therefore impossible 
to distinguish whether there are two distributions or one 
wider one. If the width of each distribution is determined 
separately, then this result may be combined with the 
whole distribution to obtain the separation (Fig. 16c). 
The partial-structure-factor method not only does this 
but goes somewhat further and extracts the interference 
function between the two distributions directly. 

In terms of the resolution criteria described above, it 
must now be clear that, because of the wide difference 
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in the effective resolution being used to determine the 
crj on the one hand and the <$ij on the other, the errors in 
the crj values should be much larger. This is borne out 
by the data in Tables 1-5 where the ~ij values remain 
within a narrow error band whatever the constraints 
imposed, whereas the crj values, especially when the 
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Fig. 16. (a) Two identical Gaussian distributions of width 12 A separated 
by 5 A and whose sum is the continuous line shown in (b) and (c). 
The dashed line in (b) is the best fit of  a single Gaussian to the sum of 
the two Gaussians from (a) and shows that, under these circumstances 
(6 < ~/2), the existence of the two component Gaussians cannot be 
distinguished. If one of them can be measured separately, as shown 
schematically in (c), the existence of the two can be deduced by 
subtraction of one Gaussian from the total. 

fragment size is small, are very sensitive to any applied 
constraints. Since, in general, the 60 values contain 
the most interesting information about the interfacial 
structure, the best design for an experiment is to focus 
on the 5ij rather than the aj. This observation also 
accounts for an interesting feature that one notices when 
analysing a set of isotopic data, which is that the 
introduction of roughness as a fitting parameter often 
has little effect on the final structure determined in a 
neutron experiment, whereas it is often very important 
in X-ray reflectivity. The introduction of roughness has 
no effect on the 5ij, but does affect the aj. The crj and 
the roughness are strongly linked and the low resolution 
of the neutron experiment means that they may not be 
clearly distinguished, unless of course the dimensions 
of the layer are larger than about 50/~. The X-ray 
experiment is generally more sensitive to the overall 
thickness and with its considerably higher resolution 
will often be able to determine the roughness as an 
independent parameter. 

6. Roughness 

Most real interfaces are rough, liquids because of ther- 
mal motion and solids because of static roughness. 
In addition to the roughness, there may be a finite 
distance over which the density changes between the 
two limits of the bulk phases, which we refer to as the 
diffuseness of the interface. Roughness and diffuseness 
both reduce the specular reflectivity, the latter being 
just a reduction but the former removing signal from 
the specular to the off-specular direction. For a simple 
liquid, the effects of roughness and diffuseness on the 
specular reflectivity cannot be distinguished but can 
only be resolved by off-specular measurements (Braslau, 
Deutsch, Pershan, Weiss, Als-Nielsen & Bohr, 1985) 
and, since the roughness transfers signal from specular 
to off-specular scattering, the effect of roughness on the 
specular intensity depends on the instrumental resolu- 
tion. These effects have been considered in some detail 
by Braslau et al. (1985) and Schwartz, Schlossman, 
Kawamoto, Kellogg, Pershan & Ocko (1990). Since we 
are here only considering specular reflection, we make 
no attempt to distinguish diffuseness and roughness but 
lump them together under the single term 'roughness'. 

Roughness is often used as a fitting parameter in mod- 
elling specular reflectivity profiles and is easily included 
in the optical matrix calculation (Cowley & Ryan, 1987). 
For a fitted roughness parameter to have any physical 
significance, the resolution has to be sufficiently high 
to distinguish its effect on the reflectivity. Given the 
discussion in the earlier sections, this means that, in 
terms of a single layer, ~max must be large enough to 
observe the damping of the partial structure factor (see 
Fig. 7). Thus, even the observation of one complete 
interference fringe from a uniform layer may not be 
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sufficient to define the roughness uniquely. It is worth 
noting that, although neutron reflection may not have 
sufficient resolution to determine the roughness from 
the damping of any interference fringe, except when the 
layer thickness is greater than about 50/~, the method 
of progressively increasing the length of the label does 
give a direct measurement of the roughness (Fig. 9). 
The question we address here is whether the roughness 
propagates uniformly through the layer. Thus, there must 
be some depth in the solution where the system is no 
longer following the thermal motion of surfactant at the 
air/liquid interface. 

In evaluating the form of the cross partial structure 
factor [(49) and (50)], we have assumed an average 
distribution of the two separate components contribut- 
ing to the cross term, i.e. the interference is between 
the two average distributions and there are no losses 
resulting from coupling of the distributions to in-plane 
fluctuations. This is not necessarily correct and it may 
be necessary to introduce an additional damping term 
to allow for these fluctuations. Pershan (1994a) has 
observed such a damping effect for relatively thick 
(of the order of hundreds of A) helium layers on a 
solid substrate. Pershan's modification of the specular 
reflection in the presence of such damping would modify 
the expressions for the cross terms given earlier to 

h/~')(t~) = -t-[h!')(~)h)l)(r;)] '/2 cos(t~6ij) exp( ' 2 

(67) 
and 

hbl)( ) = '/2 sin(  ij)exp(-½ 2 0), 
(68) 

where eij is a damping factor. In the surfactant layers 
under consideration, such a damping term could arise 
between the water substrate and the surfactant layer if 
the thermal motion of the surface in the vertical direction 
were not uniform through the surface. If at some depth 
in the underlying liquid the thermal motion is no longer 
correlated with that of the outer part of the layer, there 
will be damping effects that will lead to errors in the 
values of the 6ij deduced from the experiment. 

We first note that the presence of a damping term 
would not only affect the analysis in terms of partial 
structure factors but would make the optical matrix 
calculation of the reflectivity incorrect. This would lead 
to errors in all the methods of analysis discussed in 
this paper! It is therefore important to have some means 
of establishing whether or not the effect is significant. 
In terms of the partial-structure-factor analysis of the 
surfactant layer, it is relatively easy to detect. Fig. 17 
shows the effects of introducing finite values of eij 
into cross partial structure factors of the two types, (a) 
between two parts of the surfactant molecule and (b) 
between a surfactant fragment and water. By comparison 
with (28), an appropriate value for eij might be of the 

order of 0 .2 for water, i.e. about 9 ~2,  and the calculations 
shown in Fig. 17 are based on this value. As would 
be expected, the effect of the damping is to reduce 
the cross interference. This changes the shape of the 
cross partial structure factor and, if the effect is large, 
it will not be possible to fit the simpler equation (49) 
to the data. The value of eij of 9 A 2 already has this 
effect in Fig. 17. However, when experimental error 
is included, or when the observed cross term has not 
reached a maximum or minimum, i.e. n6ij is small, the 
contribution of damping would not be distinguished from 
a slightly smaller value of 6ij. Thus, when experimental 
error is included into Fig. 17 the fitted values of 60 when 
damping is occurring would be about 1/~ (about 10%) 
smaller than their values in the absence of damping. This 
then implies that, if damping is present, the values of 
60 obtained from fitting the data, whether by partial- 
structure-factor analysis or by use of the optical matrix 
model, will be underestimates of the true values. It 
seems probable that damping effects might become more 
significant as the separation of the fragments increases 
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or when considering components that are not directly 
attached to one another, e.g. water and surfactant. Thus, 
the overdetermination of the separations between the 
different components of the interface should help to 
identify the damping effect because they will lead to 
inconsistencies. For the C16TAB system being consid- 
ered here, we have observed no detectable damping 
effects, indicating that the water interface moves with 
the surfactant. 

The effect of damping on the reflectivity itself can 
be deduced using the partial-structure-factor analysis. In 
the case of Fig. 17(a), the magnitude of the positive 
cross term is decreased by damping as n increases. 
Through (67), this leads to a reduction in the reflected 
signal, which increases with n. This gives an apparently 
thinner layer, as found above and, if the reflectivity 
cannot be extrapolated to n - 0, an apparently lower 
amount of material at the surface. Thus any experi- 
mental result indicating that the amount of adsorbed 
material is less than expected may also be indicating 
that damping effects are significant. It is then essential 
to make accurate measurements down to as low a n as 
possible. Since terms of the type shown in Fig. 17(b) are 
negative, damping in this case causes the reflectivity to 
be increasingly larger than expected as n increases. The 
effect of this on the analysis is then difficult to predict 
because it depends on the scattering-length densities of 
both the layer and the substrate. 

7. Partial structure factors and the phase problem 

It is always possible to describe the structure of the 
interface in terms of odd and even distribution functions. 
Given limited a priori  knowledge of the system, the only 
phase ambiguities then occur in the cross terms in the 
partial structure factors, i.e. the sign ambiguities in (49) 
and (50). Thus, the phase problem manifests itself as an 
ambiguity in the sign of each value of 60 . However, 
there will always exist relations of the type of (52) 
which link the various 6ij. It should then be possible by 
overdetermination of the structure in terms of the number 
of partial structure factors to resolve the phase problem 
to a level that physical reasonableness or knowledge of 
the structure completes an unambiguous determination. 
The simplest example of this is the structural relation 
of heads, chains and water for the coarse labelling of 
the CI6TAB layer. Each determined 6ij may be positive 
or negative and the only possible solutions are with 
the hydrocarbon chain pointing away from the water 
and being slightly further from the water than from 
the head group (see Table 1 for the values of 6ij), or 
that the hydrocarbon chain is totally immersed in the 
water with the head group at the surface and slightly 
immersed in the water. The latter is obviously physically 
unreasonable and so the structure is unambiguously 
determined. Phase ambiguity may, however, remain be- 

cause of limitations on the resolution. As described in the 
section on resolution, relative errors in the 6ij increase 
as 6ij becomes small because the resolution limit is 
being approached. Thus, the uncertainty in 6hw in the 
coarse determination of the C16TAB structure is such 
that it is only just accurate enough to decide which 
way round are the head-group and water distributions. 
This ambiguity was also the reason for introducing the 
constraint of no backfolding in the C16 chain when doing 
the least-squares fit to the set of 45 profiles involving 
C2 fragments. The quite large error in each 6nh made 
it possible for the program to lock in to minima where 
the 6nh might be in the wrong order, i.e. to choose the 
wrong phases. 

8. Systematic errors 

There are two main sources of error in the determination 
of reflectivity, the background subtraction and systematic 
errors resulting from non-reproducibility, isotope effects 
etc. Isotope effects do not matter unless a set of reflectiv- 
ities is being used and the contribution of the background 
is much more of a problem for neutrons than for X-rays. 
The experimental problem of the background subtraction 
is that the background cannot strictly be determined. 
It is obtained either by extrapolation to each side of 
the specular peak or by extrapolating to essentially zero 
reflectivity, i.e. to the total signal at high n. The latter is 
only a valid procedure when the background is known to 
be fat. In the special case where the components forming 
the bulk phases can be contrast matched and where the 
interface can also be made null reflecting the background 
resulting from incoherent and multiple diffraction ef- 
fects, which are the main contributors to the neutron 
background, can be determined experimentally. How- 
ever, the true background may still have off-specular 
components which do not totally vanish under these 
contrast conditions. We have previously discussed the 
effects of errors on the partial-structure-factor method 
(Lu, Simister, Thomas & Penfold, 1993a) but with the 
possibility of the simultaneous fitting of a whole set 
of isotopic profiles and a clearer understanding of the 
factors determining the resolution of the experiment, it 
is useful to re-examine the problem. For simplicity, we 
do this for the case of a flat background only. 

The effect of the subtraction of an incorrect back- 
ground level is most easily assessed starting from Fig. 
14, which shows the determination of a self partial 
structure factor whose width is close to the resolution 
limit, as defined by 7r/nmax. We assume that there is a 
constant background error of ZI, which will give rise to 
an error in h(1) of ~ t, n r /  

E = n4A/167r2b 2. (69) 

The largest background in solution work is usually 
obtained when null reflecting water or HzO is the sub- 
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strate and is typically about 6 x 10 -6  (measured in 
terms of the reflectivity). If 5% of this is taken as a 
reasonable error, then, for the scattering length of a 
small fragment of the type shown in Fig. 14 at e~ = 
0.15/~ -1, E is about 2 × 10 -6. This is a significant 
error and, as can be seen from Fig. 18 where we plot 
the experimental partial structure factor with different 
subtracted flat backgrounds, would lead to a large error 
in the determined width of the distribution. The results 
of the fitting in Fig. 18 reinforce the earlier conclusion 
that, when the scattering-length density of a fragment 
is small, e.g. it contains less than the equivalent of 
about ten close-packed D atoms, its width cannot be 
determined to better than about 30%. This is the reason 
for the inaccurate values obtained for the widths of the 
head group, C4 and C2 fragments in Table 5 and of the 
head group in Table 1. The reflectivity profiles are just 
not very sensitive to the thickness of the distribution at 
this low signal level. This makes it doubly important 
that an independent measure of the thickness of these 
fragments can be made as in Fig. 9. Although each of the 
measurements in Fig. 9 is susceptible to the same type 
of background error, the relative error rapidly becomes 
smaller as the number of labelled atoms increases, the 
signal increasing as the square of the number of C 
and D atoms in the labelled fragment. Provided that 
a reasonably linear extrapolation may be made, the 
determination of the limiting fragment thickness by this 
means will be much more accurate than by determination 
from an individual partial structure factor. 

It is less easy to determine the effect of errors on 
the cross partial structure factors because of the way 
that these errors may propagate through the various data 
manipulations that take place. At first sight, background- 
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Fig. 18. Effect of background errors on the calculated thickness for 
the head-group partial structure factor for a monolayer of CI6TAB 
adsorbed at the air/water interface. The lines are calculated for 
Gaussian distributions of width 11 A (dashed line), 14 A (continuous 
line) and 17 A (dotted line). The data points obtained with the best 
fitted background would best be fitted by the continuous line (see 
Fig. 14). The two sets of points shown are with 4-5% changes in the 
subtracted background. 

subtraction errors play at least an important part as for 
the self partial structure factors. Thus, a typical cross 
term (in null reflecting water) is obtained by 

- ( I )  2bnbhn,h = (vc4/167r2)[R,h - R h  - -  R,], (70) 

where R,,h and Rh are the reflectivities when groups n and 
h and group h are labelled, respectively. The background 
errors would then appear to be comparable with the 
errors in the self partial structure factors. However, in 
the fitting of 6,h values there is not as much emphasis 
on the high-~ region where the background errors are 
largest and it is generally found that the values obtained 
for the 6,-,h are not as sensitive to this type of error. In 
fact, the 6,,h are more sensitive to other systematic errors 
such as non-reproducibility, calibration of the intensity 
and small isotope effects. To illustrate this, we choose 
the simple case where bn = bh ,  Rnh  = 4Rh and R h = 

Rn. We suppose that there is a 5% error in the coverage, 
which is equivalent to a 10% error in R h .  It is then easy 
to show using (70) and (49) that 

h(1) hh(~)[cos v~6,,h 4- 0.05] (71) nh ~ 

In the middle of the useful range of v~ and for a typical 
value of 6,h of 5 A, this gives rise to an error of about 
0.5 ~. The relative error will increase as 6ha increases 
and it will also increase if more weight is given to the 
points at highest e~. However, this error in the determi- 
nation of a single 6,h Can be reduced in two ways. The 
first, and most obvious, way is for the set of independent 
6,,h to be overdetermined as has been done in the present 
work on C16TAB. Since the errors of the type described 
by (71) are random and since as much attention is given 
to determining the smaller 6,h values as to the larger 
ones, the overdetermination will greatly reduce the errors 
in the individual 6,,h and this is reflected in the errors 
produced in the tables by the non-linear least-squares- 
fitting routine. A second procedure for reducing these 
systematic errors starts by acknowledging that all the 
sources of error other than the background subtraction 
have the effect that the apparent coverage fluctuates 
about the correct value. Some improvement can then be 
obtained by determining the average coverage from the 
whole set of data (the coverage is model independent 
to a high degree of approximation) and rescaling the 
reflectivity of each profile to give the correct average 
coverage. This reduces to a minimum the 'cross talk' 
between the self and cross terms in the partial structure 
factors that leads to the errors of (71). This procedure 
has been followed in the determination of the 6,,h values 
from the partial structure factors. The test of the success 
of such a procedure is that in cases where the structure 
is overdetermined it gives a more self-consistent set of 
data. The equivalent correction in the least-squares fitting 
of the set of reflectivity profiles is to constrain the area 
per molecule to the average value obtained from the set 
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of data in null reflecting water, and we have already 
noted the value of this constraint. 

The discussion of the resolution and systematic errors 
in the reflection experiment as applied to the C16TAB 
monolayer show that it is possible to determine with 
acceptable accuracy the separation of components in the 
layer provided that they give an adequate signal. At the 
surface coverages used, the C2 fragments appear to be 
just too small as is evident from the values of 6,,h in 
Tables 4 and 5 in comparison with the errors but the 
experiment is possible in terms of Ca fragments. 

A final source of systematic error is the assumption 
of specific analytic forms for the distributions of each 
component of the layer and the related assumptions 
of evenness and oddness in applying (49) and (50). 
Since any distribution may be expressed in terms of 
a series of simple distributions, it is always possible 
to use a more complete set of basis distributions to 
explain a set of reflectivity profiles. This also extends 
to using mixtures of odd and even functions to describe 
a distribution. A mixture of odd and even distributions 
would be needed, for example, to describe the distribu- 
tion of ethanol adsorbed at the surface of ethanol/water 
mixtures (Li, Lu, Styrkas, Thomas, Rennie & Penfold, 
1993). However, the inclusion of extra terms introduces 
more fitting parameters and would destroy the main 
attraction of the use of partial structure factors, i.e. that 
they give a simple interpretation of the structure in terms 
of intuitively reasonable descriptions of the distributions 
of the individual components. Some analysis of the 
errors arising from the use of (49) and (50) when the 
distributions are not exactly even or odd has been given 
(Simister, Lee, Thomas & Penfold, 1992a,b), which 
shows that the approximation holds best at low ~6, 
although the very slight deviation from evenness of the 
distribution in Fig. 12 would not contribute any error 
over the range of ~; explored in the experimental results 
described here. 

9. Partial structure factors in the absence of labelling 

We have so far used the partial-structure-factor method 
as a means of comparing different reflectivities from 
the same chemical structure. However, as implied by 
Denton, Gray & Sullivan (1994), partial structure factors 
may be the simplest approach to the interpretation of 
the reflectivity even when there is no isotopic data. 
Lu et al. used such an approach to interpret longer- 
range structure at the air/water interface of a surfactant 
solution above its critical micelle concentration (c.m.c.) 
(Lu, Simister, Thomas & Penfold, 1993b). The surfactant 
was found to form the usual monolayer at the surface 
and a layer of micelles (or aggregates of some kind) 
also formed at some distance below' the surface. For 
the deuterated surfactant in null reflecting water, the 

reflectivity therefore contains three terms: 

RI = (167r2b2/~4) r-d)Llzmm + hip -t- 2hm,(') ], (72) 

where the subscripts m and 1 denote monolayer and 
micellar layer, respectively. The number of excess mi- 
celles was estimated to be small and such as to make 
the ht~ ) term in (72) negligible in comparison with the 
the other two terms. A measurement of the reflectivity 
at the c.m.c., Rcmc, where there are no micelles, gives an 

I-(1)_ approximate measure of nrn,,, Hence, 

h(') "~ (n4/327r2b2)[R1 ecmc] (73) ml  - -  

i (a) 

4 

2 
,,o 

"~ 0 % 
x 

-2 
t ' -  

-I 

I i .I I I I i 

(b) 
6 

~ 4 

r-- .~ 2 

(c) 
1.0 

0.5 
E 

,-g o 

8 -0.5 

-1.0 

-1.5 ' ' _' ' ' 
0.02 O.Ot,. 0.06 0.10 0.08 o:1z o:1,, 

K/k ~ 
Fig. 19. Approximate cross term in the partial structure factor between 

a surfactant monolayer and a layer of micelles below the surface 
[equation (74)]. The two contributing factors to the partial structure 
factor are shown in (b) and (c). The overall fit to the data is shown 
in (a). The thickness of  the micellar layer is 65 A centred about 95 A 
from the monolayer at the surface. 
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and taking Gaussian distributions for both monolayer 
and micellar layer, 

h(1) (Trffmcrlnmnl/4)t~2 exp [_t~2(O.~l q_ O.2m)/8] ml -" 
x cos n61m, (74) 

where 61m is the separation of micellar and monolayer. 
Fig. 19 shows the contribution of the two main terms in 
(74), the composite Gaussian and the cos term, to the 
observed partial structure factor. Although this is only 
an approximate interpretation, a more refined calculation 
hardly changed the fitted parameters. The value of using 
analytical forms for the two self partial structure factors 
here is that it gives a direct physical interpretation of 
the main features of the reflectivity with minimal use of 
fitting routines. 

10. Isotope effects 

As should be clear from some of the ~preceding discus- 
sion, the partial-structure-factor method does not have 
to rely on data from different isotopic species. Thus, an 
improvement in the quality of the information obtained 
from specular refiectivity will result from choosing the 
isotopic composition to optimize the neutron reflectivity 
and then combining the neutron reflectivity data with 
X-ray measurements on the same sample. The more 
common situation will utilize data from samples of 
different isotopic composition. The danger is then that 
there may either be genuine isotope effects where one 
pure isotopic species behaves differently from another 
or there may be secondary isotope effects because it is 
not possible to reproduce a given system accurately or 
because there are differences in the purity or chemical 
formulae of the isotopic species. 

For the soluble surfactant systems used as illustration 
throughout this review, surface-tension measurements 
indicate that genuine isotope effects are negligible and 
it is relatively straightforward to prepare the interfacial 
system reproducibly to within about 5% in terms of 
amount of material at the interface. Thus, provided that 
the labelled systems studied give reflectivities that differ 
by substantially more than about 5%, the method should 
be accurate. If the differences are comparable with the 
reproducibility, the direct determination of the partial 
structure factors is likely to blow up and give ridiculous 
values of the structural parameters. The use of the partial 
structure factors to fit the reflectivity directly relaxes the 
reproducibility requirement in that the partial structure 
factors are not determined explicitly and the method is 
not as vulnerable to a pair of ill conditioned reflectivity 
profiles. There are many systems where there may be no 
routine method for establishing the lack of an isotope 
effect, in which case, the measurement of the X-ray 
reflectivity may be a useful means of testing isotope 

dependence of the interfacial structure [see, for example, 
(Styrkas, Thomas, Adib, Davis, Hodge & Liu, 1994)]. 

There are a number of interfacial systems for which 
isotope effects have been reported. These are likely 
to occur when a system is near a phase transition. 
What might then be a small isotope effect on, say, 
the absolute temperature of the phase transition may 
cause substantial differences in the interfacial properties 
of the two isotopic species near that phase transition. 
Such effects are more probable, and have been reported, 
for closely packed monolayers. It is also well known 
that polymeric systems may have significant isotope 
effects (Atkin, Kleintjens, Koningsveld & Fetter, 1984) 
but the more serious problem with polymeric systems is 
often that it is exceedingly difficult to prepare identical 
polymer molecules. The solution to this problem may 
then be to prepare a series of samples and to try to 
find pairs of isotopic species with the same properties. 
Finally, it is worth mentioning our own experiences in 
attempting to use the partial-structure-factor method for 
solid/liquid interfaces. 

The solid/liquid interface is generally more complex 
than the air/liquid interface. For example, a typical 
experiment might attempt to determine the structure of 
a surfactant layer adsorbed on hydrophobically coated 
silicon. If any isotopic substitution is to be used on 
the hydrophobic layer, and there are good reasons for 
wanting to do this [see, for example, Fragneto, Thomas, 
Rennie & Penfold (1995)], the reproducibility of the 
surface roughness and the condition of the natural oxide 
layer, both of which may affect the hydrophobic layer 
on the silicon, may not be high enough to extract partial 
structure factors with certainty. Thus, we have so far 
not succeeded in applying the partial-structure-factor 
method to any data at the solid/liquid interface, even 
though we have made the theoretical number of isotopic 
substitutions necessary. It is probable, however, that the 
direct fitting routine will prove more effective for this 
problem. 

11. Conclusions 

We have aimed to show that the labelling of suitably 
chosen fragments of an interface may be used to probe its 
structure much more effectively than would be possible 
from a reflectivity measurement on unlabelled species. 
We now attempt to set the method in the context of the 
various methods that have been used to analyse reflectiv- 
ity data up to now. We represent these schematically in 
Table 6 and in terms of an idealized common treatment 
for each approach, excluding those methods that aim for 
a truly direct inversion of reflectivity data, i.e. the ex- 
periments of Sanyal et al. (1993) and Penfold, Webster, 
Bucknall & Sivia (1994), and the proposed method of 
Feideldy, Lipperheide, Leeb & Sofianos (1992), none of 
which is expected to be of general utility. 
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Table 6. Summary of main methods for relating reflectivity to interfacial structure 
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Basis Method for phase problem P~l~(z)  p ( z )  n ( z )  Reference 

( D i r e c t  F o u r i e r  t r a n s f o r m )  - e~ l~( z )  - - (a )  

Cubic b splines Square root deconvolution - p ( z )  - ( b ) - ( e )  

Periodic functions (Not separate) - p ( z )  - ( f )  

Uniform layers (min.) (Not separate) - p ( z )  - (g)  

Uniform layers (max.) (Not separate) - p ( z )  - (h)  

Uniform layers (max.) Non-linearity - p ( z )  - ( i ) - ( k )  

B a s i c  c h e m i c a l  f r a g m e n t s  ( N o t  s e p a r a t e )  - - n ( z )  (1) 

P a r t i a l  s t r u c t u r e  f a c t o r s  S t r u c t u r a l  r e l a t i o n s  - - n ( z )  ( m ) - ( s )  

The bold type indicates that an exact relation between reflectivity and scattering-length-density profile is used, italics that the relation is approximate 
(kinematic or corrected kinematic). References: (a) Pershan (1989); (b) Pedersen (1992); (c) Hamley & Pedersen (1994); (d) Pedersen & Hamley 
(1994a); (e) Pedersen & Hamley (1994b); ( f )  Singh, Tirrell & Bates (1993); (g) Sivia, Hamilton & Smith (1991); (h) Kunz, Reiter, G~Stzelmann & 
Stamm (1993); (i) Zhou & Chen (1993); Q) Zhou, Lee, Chen& Strey (1992); (k) Zhou & Chen (1995); (l) Denton, Gray & Sullivan (1994); (m) 
Crowley, Lee, Simister & Thomas (1991); (n) Lee & Milnes (1995); (o) Lu, Hromadova, Simister, Thomas & Penfold (1994); (p) Lu, Simister, 
Lee, Thomas, Rennie & Penfold (1992); (q) Lu, Simister, Thomas & Penfold (1993a); (r), (s) Simister, Lee, Thomas & Penfold (1992a,b). 

For the purposes of comparison, it is convenient to 
think of all these fitting procedures as being divided 
into three steps, although this may not be how they 
are actually executed. The first step is either a direct 
Fourier transform or the fitting of a set of basis func- 
tions to the reflectivity (the indirect Fourier transform 
or an equivalent) to give a Patterson function. The 
second step is the solution of the phase problem, either 
a deconvolution of the Patterson or some means of 
putting phase information into step one so that a reliable 
scattering-length-density profile is obtained. The third 
step, to which much less attention has been given, is the 
determination of the actual composition profile from the 
scattering-length-density profile determined in the first 
two steps. 

The most widely used method is to calculate the 
reflectivity using a model of a series of uniform layers 
and to compare it with the observations. The three 
steps given above are then inextricably entangled and 
this often makes it difficult to assess what is required 
to improve a fit or to establish t he  uniqueness of a 
given interfacial structure. A different insight would 
be obtained if the uniform block distributions were 
converted to partial structure factors and these fitted to 
the reflectivity, though this is not usually the procedure 
used. For n layers there are then 2n unknown parameters, 
the scattering-length density and thickness of each layer 
(there may be more unknown parameters if the compo- 
sition profile is to be derived). The separations between 
the layers, which determine the phases, are defined in 
terms of the thicknesses if the layers are contiguous. 
Within the kinematic approximation, the reflectivity can 
then be expressed analytically using equations (41), (49) 
and (50) and the observed refiectivity could be fitted 
directly in the manner of Lee & Milnes (1995). This 
would be equivalent to fitting a set of n basis functions of 
predetermined functional form, though of variable width 
and amplitude, while fitting the phase of the reflectivity 
by adjustment of the relative positions of the layers. 

Since the latter are usually directly determined by the 
thicknesses, any change in one of the functions will 
also affect the Phase. The fitting procedure is therefore 
more complex than when the analysis is divided into 
sequential steps, as in the method of Pedersen (1992) and 
it is not surprising that many researchers find it difficult 
to fit their data. The further complication is that a set 
of layers of uniform scattering-length density does not 
usually map on to a set of chemically distinct layers 
because one component may be distributed unevenly 
throughout several layers. It may then be necessary to 
make further assumptions, including volume and compo- 
sition constraints, and the relation between the chemical 
composition and scattering-length-density distributions 
may not only be complicated but not unique, which 
further widens the choice of starting models or the choice 
of models that will fit the data adequately. 

The occasions where the uniform layer model is most 
appropriate will be those when the width of the interface 
is such that data close to the critical angle are important, 
i.e. the kinematic approximation is invalid, or when the 
chemical composition is such that it almost divides into 
uniform layers, e.g. a polymer film on a solid substrate. 
This is when the Bayesian approach of Sivia, Hamilton 
& Smith (1991) will be most effective. This introduces 
an objective means for optimizing the selection of the 
block model basis functions using a minimum num- 
ber of uniform layers and making use of independent 
information about the layer when possible. When the 
composition is such that several uniform layers are 
required to fit the data, it is not clear, however, that any 
procedure, however objective, can be generally totally 
reliable because the implication of needing several layers 
to describe the system is that it is chemically somewhat 
complex and then one runs into the problem described 
in the previous paragraph. 

One of the advantages of separating, at least in part, 
the initial Fourier transform step from the deconvolution 
of the Patterson is that the basis functions can be chosen 
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to be more characteristic of the way that the interface is 
made up and therefore less artificial. Thus, in the method 
of Singh, Tirrell & Bates (1993), periodic functions are 
used as the basis set and this is clearly appropriate for 
multilayer structures. 

The distinctive feature of the approaches of Denton, 
Gray & Sullivan (1994) and Lee & Milnes (1995) is the 
focus on the chemical elements at the interface and their 
basis sets are functions chosen to match the chemical 
description of the interface as closely as possible. The 
methods of Lee & Milnes and Denton et al. are close 
in spirit to an indirect Fourier transform. In addition, 
the method of Lee & Milnes also solves the phase 
problem more or less completely because it makes use 
of definite phase relations between some of the partial 
structure factors, and therefore does the equivalent of the 
square-root deconvolution of Pedersen (1992). Denton 
et al.'s method is tuned to the ultimate chemical logic 
of the structure of the interface but, since information 
at this resolution is not usually available, this means 
that constraints must be included. The method of Lee & 
Milnes is tuned to the isotopic labelling scheme used for 
the experiment. The method of Simister, Lee, Thomas & 
Penfold (1992a,b) is not substantially different from an 
indirect Fourier transform with square-root deconvolu- 
tion but focuses more closely on the set of structural 
parameters that can be obtained without recourse to 
detailed models. All three methods in this paragraph are 
limited to approximations for the reflectivity but have 
the advantage that they yield the structure, rather than 
the scattering-length profile, directly. They also rely on 
the possibility of using more than one reflectivity profile. 

It would seem self-evident that if the quality of the 
data is good and the range of n is appropriate, the ideal 
would be to Fourier transform the data directly to obtain 
the Patterson function. It should now be clear that this 
does not solve the whole problem, which is to obtain 
the individual number densities, and this is one of the 
reasons that this route has not been followed very often 
[see, for example, Pershan (1989) and Schlossman et al. 
(1991)]. 

Finally, we draw attention to the fact that we have 
only discussed specular reflectivity. There are likely 
to be occasions when it becomes difficult to separate 
specular and non-specular reflection and then it will be 
essential to use a full model that does not separate the 
scattering-length-density profile normal to the surface 
from fluctuations in the surface plane. Although some 
attempts have been made to move along this route 
(see Sinha, Sirota, Garoff & Stanley, 1988), theoretical 
and experimental progress will be necessary before it 
becomes more widespread. 
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